scholarly journals Differential Expression of Peroxisomal Proteins in Distinct Types of Parotid Gland Tumors

2021 ◽  
Vol 22 (15) ◽  
pp. 7872
Author(s):  
Malin Tordis Meyer ◽  
Christoph Watermann ◽  
Thomas Dreyer ◽  
Steffen Wagner ◽  
Claus Wittekindt ◽  
...  

Salivary gland cancers are rare but aggressive tumors that have poor prognosis and lack effective cure. Of those, parotid tumors constitute the majority. Functioning as metabolic machinery contributing to cellular redox balance, peroxisomes have emerged as crucial players in tumorigenesis. Studies on murine and human cells have examined the role of peroxisomes in carcinogenesis with conflicting results. These studies either examined the consequences of altered peroxisomal proliferators or compared their expression in healthy and neoplastic tissues. None, however, examined such differences exclusively in human parotid tissue or extended comparison to peroxisomal proteins and their associated gene expressions. Therefore, we examined differences in peroxisomal dynamics in parotid tumors of different morphologies. Using immunofluorescence and quantitative PCR, we compared the expression levels of key peroxisomal enzymes and proliferators in healthy and neoplastic parotid tissue samples. Three parotid tumor subtypes were examined: pleomorphic adenoma, mucoepidermoid carcinoma and acinic cell carcinoma. We observed higher expression of peroxisomal matrix proteins in neoplastic samples with exceptional down regulation of certain enzymes; however, the degree of expression varied between tumor subtypes. Our findings confirm previous experimental results on other organ tissues and suggest peroxisomes as possible therapeutic targets or markers in all or certain subtypes of parotid neoplasms.

Author(s):  
DE Heck ◽  
Y Jan ◽  
AT Black ◽  
JP Gray ◽  
DL Laskin ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Teresa Anna Giancaspero ◽  
Vittoria Locato ◽  
Maria Barile

Flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide (NAD) are two redox cofactors of pivotal importance for mitochondrial functionality and cellular redox balance. Despite their relevance, the mechanism by which intramitochondrial NAD(H) and FAD levels are maintained remains quite unclear inSaccharomyces cerevisiae. We investigated here the ability of isolated mitochondria to degrade externally added FAD and NAD (in both its reduced and oxidized forms). A set of kinetic experiments demonstrated that mitochondrial FAD and NAD(H) destroying enzymes are different from each other and from the already characterized NUDIX hydrolases. We studied here, in some detail, FAD pyrophosphatase (EC 3.6.1.18), which is inhibited by NAD+and NADH according to a noncompetitive inhibition, withKivalues that differ from each other by an order of magnitude. These findings, together with the ability of mitochondrial FAD pyrophosphatase to metabolize endogenous FAD, presumably deriving from mitochondrial holoflavoproteins destined to degradation, allow for proposing a novel possible role of mitochondrial NAD redox status in regulating FAD homeostasis and/or flavoprotein degradation inS. cerevisiae.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wenjun Wang ◽  
Jianping Wei ◽  
Xiaoyun Tu ◽  
Xiaoqun Ye

Background. Cancer stem cells (CSCs) are responsible for tumorigenesis, chemoresistance, and metastasis. Chemoresistance is a major challenge in the management of lung cancer. Glutathione-sulphur-transferase-π (GST-π) plays an important role in the origin and development of various types of cancer by regulating the cellular redox balance. Recent investigations have demonstrated that GST-π is associated with the chemoresistance of lung CSCs (LCSCs). However, the mechanism of GST-π in lung cancer, particularly in LCSCs, remains unclear. The present study is aimed at exploring the potential role of GST-π in stemness and cisplatin (DDP) resistance of LCSCs. Materials and methods. In the present study, lung cancer cell spheres were established using the A549 cell line, which according to our previous research, was confirmed to exhibit characteristics of stem cells. Next, GST-π protein expression, apoptosis percentage, and intracellular reactive oxygen species (ROS) concentration in A549 adherent cells and A549 cell spheres were analyzed by western blotting and flow cytometry, respectively. Finally, DDP resistance, ROS concentration, and GST-π expression in LCSCs were analyzed following the interference with GST-π using DL-buthionine-(S,R)-sulphoximine and N-acetylcysteine. Results. The results revealed that GST-π was highly expressed in A549 cell spheres compared with A549 adherent cells and was associated with a decreased intracellular ROS concentration (both P < 0.05 ). Regulating GST-π protein expression could alter DDP resistance of LCSCs by influencing ROS. Conclusion. These results suggested that GST-π may be important for LCSC drug resistance by downregulating ROS levels. These findings may contribute to the development of new adjuvant therapeutic strategies for lung cancer.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 758
Author(s):  
Kyung-Soo Chun ◽  
Do-Hee Kim ◽  
Young-Joon Surh

Redox homeostasis is not only essential for the maintenance of normal physiological functions, but also plays an important role in the growth, survival, and therapy resistance of cancer cells. Altered redox balance and consequent disruption of redox signaling are implicated in the proliferation and progression of cancer cells and their resistance to chemo- and radiotherapy. The nuclear factor erythroid 2 p45-related factor (Nrf2) is the principal stress-responsive transcription factor that plays a pivotal role in maintaining cellular redox homeostasis. Aberrant Nrf2 overactivation has been observed in many cancerous and transformed cells. Uncontrolled amplification of Nrf2-mediated antioxidant signaling results in reductive stress. Some metabolic pathways altered due to reductive stress have been identified as major contributors to tumorigenesis. This review highlights the multifaceted role of reductive stress in cancer development and progression.


Antioxidants ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 129 ◽  
Author(s):  
Tiziana Corsello ◽  
Narayana Komaravelli ◽  
Antonella Casola

Hydrogen sulfide (H2S) has arisen as a critical gasotransmitter signaling molecule modulating cellular biological events related to health and diseases in heart, brain, liver, vascular systems and immune response. Three enzymes mediate the endogenous production of H2S: cystathione β-synthase (CBS), cystathione γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). CBS and CSE localizations are organ-specific. 3-MST is a mitochondrial and cytosolic enzyme. The generation of H2S is firmly regulated by these enzymes under normal physiological conditions. Recent studies have highlighted the role of H2S in cellular redox homeostasis, as it displays significant antioxidant properties. H2S exerts antioxidant effects through several mechanisms, such as quenching reactive oxygen species (ROS) and reactive nitrogen species (RNS), by modulating cellular levels of glutathione (GSH) and thioredoxin (Trx-1) or increasing expression of antioxidant enzymes (AOE), by activating the transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2). H2S also influences the activity of the histone deacetylase protein family of sirtuins, which plays an important role in inhibiting oxidative stress in cardiomyocytes and during the aging process by modulating AOE gene expression. This review focuses on the role of H2S in NRF2 and sirtuin signaling pathways as they are related to cellular redox homeostasis.


2013 ◽  
Vol 21 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Filipa Quintela Vieira ◽  
Pedro Costa-Pinheiro ◽  
João Ramalho-Carvalho ◽  
Andreia Pereira ◽  
Francisco Duarte Menezes ◽  
...  

Prostate cancer (PCa), a leading cause of cancer-related morbidity and mortality, arises through the acquisition of genetic and epigenetic alterations. Deregulation of histone methyltransferases (HMTs) or demethylases (HDMs) has been associated with PCa development and progression. However, the precise influence of altered HMTs or HDMs expression and respective histone marks in PCa onset and progression remains largely unknown. To clarify the role of HMTs and HDMs in prostate carcinogenesis, expression levels of 37 HMTs and 20 HDMs were assessed in normal prostate and PCa tissue samples by RT-qPCR.SMYD3,SUV39H2,PRMT6,KDM5A, andKDM6Awere upregulated, whereasKMT2A-E (MLL1-5)andKDM4Bwere downregulated in PCa, compared with normal prostate tissues. Remarkably,PRMT6was the histone modifier that best discriminated normal from tumorous tissue samples. Interestingly,EZH2andSMYD3expression levels significantly correlated with less differentiated and more aggressive tumors. Remarkably,SMYD3expression levels were of independent prognostic value for the prediction of disease-specific survival of PCa patients with clinically localized disease submitted to radical prostatectomy. We concluded that expression profiling of HMTs and HDMs, especiallySMYD3, might be of clinical usefulness for the assessment of PCa patients and assist in pre-therapeutic decision-making.


2019 ◽  
Vol 26 (5) ◽  
pp. 765-779 ◽  
Author(s):  
Alexios S. Antonopoulos ◽  
Athina Goliopoulou ◽  
Evangelos Oikonomou ◽  
Sotiris Tsalamandris ◽  
Georgios-Angelos Papamikroulis ◽  
...  

Background: Myocardial redox state is a critical determinant of atrial biology, regulating cardiomyocyte apoptosis, ion channel function, and cardiac hypertrophy/fibrosis and function. Nevertheless, it remains unclear whether the targeting of atrial redox state is a rational therapeutic strategy for atrial fibrillation prevention. Objective: To review the role of atrial redox state and anti-oxidant therapies in atrial fibrillation. Method: Published literature in Medline was searched for experimental and clinical evidence linking myocardial redox state with atrial fibrillation pathogenesis as well as studies looking into the role of redoxtargeting therapies in the prevention of atrial fibrillation. Results: Data from animal models have shown that altered myocardial nitroso-redox balance and NADPH oxidases activity are causally involved in the pathogenesis of atrial fibrillation. Similarly experimental animal data supports that increased reactive oxygen / nitrogen species formation in the atrial tissue is associated with altered electrophysiological properties of atrial myocytes and electrical remodeling, favoring atrial fibrillation development. In humans, randomized clinical studies using redox-related therapeutic approaches (e.g. statins or antioxidant agents) have not documented any benefits in the prevention of atrial fibrillation development (mainly post-operative atrial fibrillation risk). Conclusion: Despite strong experimental and translational data supporting the role of atrial redox state in atrial fibrillation pathogenesis, such mechanistic evidence has not been translated to clinical benefits in atrial fibrillation risk in randomized clinical studies using redox-related therapies.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2560
Author(s):  
Luis G. Guijarro ◽  
Patricia Sanmartin-Salinas ◽  
Eva Pérez-Cuevas ◽  
M. Val Toledo-Lobo ◽  
Jorge Monserrat ◽  
...  

New evidence suggests that insulin receptor substrate 4 (IRS-4) may play an important role in the promotion of tumoral growth. In this investigation, we have evaluated the role of IRS-4 in a pilot study performed on patients with liver cancer. We used immunohistochemistry to examine IRS-4 expression in biopsies of tumoral tissue from a cohort of 31 patient suffering of hepatocellular carcinoma (HCC). We simultaneously analyzed the expression of the cancer biomarkers PCNA, Ki-67, and pH3 in the same tissue samples. The in vitro analysis was conducted by studying the behavior of HepG2 cells following IRS-4 overexpression/silencing. IRS-4 was expressed mainly in the nuclei of tumoral cells from HCC patients. In contrast, in healthy cells involved in portal triads, canaliculi, and parenchymal tissue, IRS-4 was observed in the cytosol and the membrane. Nuclear IRS-4 in the tumoral region was found in 69.9 ± 3.2%, whereas in the surrounding healthy hepatocytes, nuclear IRS-4 was rarely observed. The percentage of tumoral cells that exhibited nuclear PCNA and Ki-67 were 52.1 ± 7%, 6.1 ± 1.1% and 1.3 ± 0.2%, respectively. Furthermore, we observed a significant positive linear correlation between nuclear IRS-4 and PCNA (r = 0.989; p < 0.001). However, when we correlated the nuclear expression of IRS-4 and Ki-67, we observed a significant positive curvilinear correlation (r = 0.758; p < 0.010). This allowed us to define two populations, (IRS-4 + Ki-67 ≤ 69%) and (IRS-4 + Ki-67 > 70%). The population with lower levels of IRS-4 and Ki-67 had a higher risk of suffering from multifocal liver cancer (OR = 16.66; CI = 1.68–164.8 (95%); p < 0.05). Immunoblot analyses showed that IRS-4 in normal human liver biopsies was lower than in HepG2, Huh7, and Chang cells. Treatment of HepG2 with IGF-1 and EGF induced IRS-4 translocation to the nucleus. Regulation of IRS-4 levels via HepG2 transfection experiments revealed the protein’s role in proliferation, cell migration, and cell-collagen adhesion. Nuclear IRS-4 is increased in the tumoral region of HCC. IRS-4 and Ki-67 levels are significantly correlated with the presence of multifocal HCC. Moreover, upregulation of IRS-4 in HepG2 cells induced proliferation by a β-catenin/Rb/cyclin D mechanism, whereas downregulation of IRS-4 caused a loss in cellular polarity and in its adherence to collagen as well as a gain in migratory and invasive capacities, probably via an integrin α2 and focal adhesion cascade (FAK) mechanism.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 414
Author(s):  
Didem Kart ◽  
Tuba Reçber ◽  
Emirhan Nemutlu ◽  
Meral Sagiroglu

Introduction: Alternative anti-biofilm agents are needed to combat Pseudomonas aeruginosa infections. The mechanisms behind these new agents also need to be revealed at a molecular level. Materials and methods: The anti-biofilm effects of 10 plant-derived compounds on P. aeruginosa biofilms were investigated using minimum biofilm eradication concentration (MBEC) and virulence assays. The effects of ciprofloxacin and compound combinations on P. aeruginosa in mono and triple biofilms were compared. A metabolomic approach and qRT-PCR were applied to the biofilms treated with ciprofloxacin in combination with baicalein, esculin hydrate, curcumin, and cinnamaldehyde at sub-minimal biofilm inhibitory concentration (MBIC) concentrations to highlight the specific metabolic shifts between the biofilms and to determine the quorum sensing gene expressions, respectively. Results: The combinations of ciprofloxacin with curcumin, baicalein, esculetin, and cinnamaldehyde showed more reduced MBICs than ciprofloxacin alone. The quorum sensing genes were downregulated in the presence of curcumin and cinnamaldehyde, while upregulated in the presence of baicalein and esculin hydrate rather than for ciprofloxacin alone. The combinations exhibited different killing effects on P. aeruginosa in mono and triple biofilms without affecting its virulence. The findings of the decreased metabolite levels related to pyrimidine and lipopolysaccharide synthesis and to down-regulated alginate and lasI expressions strongly indicate the role of multifactorial mechanisms for curcumin-mediated P. aeruginosa growth inhibition. Conclusions: The use of curcumin, baicalein, esculetin, and cinnamaldehyde with ciprofloxacin will help fight against P. aeruginosa biofilms. To the best of our knowledge, this is the first study of its kind to define the effect of plant-based compounds as possible anti-biofilm agents with low MBICs for the treatment of P. aeruginosa biofilms through metabolomic pathways.


Sign in / Sign up

Export Citation Format

Share Document