scholarly journals Adaptive Capacity of Saidi Sheep and Goats to Heat Stress and Diurnal Variation under the Hot Dry Conditions of Upper Egypt

2021 ◽  
Vol 58 (3) ◽  
pp. 123-129
Author(s):  
Adel Aboulnaga ◽  
Mohmed Hayder ◽  
Mohmed Abdelkhalek ◽  
Mohmed Shafie ◽  
Taha AbdelSabour ◽  
...  
2021 ◽  
pp. 106499
Author(s):  
A.M Aboul Naga ◽  
T.M. Abdel Khalek ◽  
Mona Osman ◽  
A.R. Elbeltagy ◽  
E.S. Abdel-Aal ◽  
...  

1994 ◽  
Vol 42 (3) ◽  
pp. 307
Author(s):  
PK Groom ◽  
BB Lamont ◽  
L Kupsky

We studied the morphology, anatomy, phyllotaxy and daily seasonal ecophysiology of the two leaf types (broad and terete) of Hakea trifurcata (Smith) R.Br., a widespread shrub in south-western Australia. Both leaf types may be present on the same branchlet, with one or two broad leaves forming first during the annual growth period (late winter) followed by many terete leaves in spring. Terete leaves were more xeromorphic than broad leaves, including greater thickness, denser tissues and fewer veins. Broad leaves fixed more carbon and transpired more water per unit mass than terete leaves, in a well ventilated leaf chamber, and had lower (more negative) xylem pressure potentials. Broad leaf temperatures only exceeded those of terete leaves under hot, dry conditions, with no relationship between transpiration rates and leaf temperature. Terete leaves possessed many structural and physiological characteristics commonly associated with drought-tolerant leaves, whereas broad leaves were characteristic of leaves which keep their stomates open during periods of water and heat stress. Both leaf types appear to increase the fitness of this species in a mediterranean climate, with broad leaves having the potential to supply extra photosynthates and nutrients to the new season's growth.


2017 ◽  
Vol 17 (1) ◽  
pp. 59-88 ◽  
Author(s):  
Amani Al-Dawood

Abstract Small ruminants (sheep and goats) play a predominant role in the economy of million people, and have provided meat, milk, skin, wool and fiber for centuries. Animals undergo various kinds of stressors, i.e. physical, nutritional, chemical, psychological and heat stress (HS). Among all, HS is the most concerning at present in the ever-changing climatic scenario. Climate change is the most serious long-term challenge faced by small ruminants’ owners worldwide. HS results in decreased growth, reproduction, production, milk quantity and quality, as well as natural immunity, making animals more vulnerable to diseases, and even death. Thus, HS results in great economic losses, emphasizing the necessity to objectively assess animal welfare. The increasing demand for animal products paralleled by the frequent hot climate is a serious threat for the agriculture sector. The ability of sheep and goats to cope with HS without harming their welfare and productive performance has been often overrated. To date, little attention has been paid to comprehensive detailed data on the adverse effect of HS on sheep and goats. Therefore, this review discusses in detail the sheep and goats’ behavioral, physiological, molecular/cellular, hematological, biochemical and immunological responses under HS conditions. In addition, this review also presents the adverse effects of HS on reproduction and fertility, milk quantity and quality, feed intake, and water consumption of sheep and goats. Finally, this review suggests various methods for HS alleviation. In conclusion, HS impairs productivity and well-being in sheep and goats. The improved understanding of the impact of HS on small ruminants will help in developing management techniques to alleviate HS and highlighting the need for future researches on HS in sheep and goats.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kaho Kitajima ◽  
Kazato Oishi ◽  
Masafumi Miwa ◽  
Hiroki Anzai ◽  
Akira Setoguchi ◽  
...  

Heart rate variability (HRV) is the heart beat-to-beat variation under control of the cardiovascular function of animals. Under stressed conditions, cardiac activity is generally regulated with an upregulated sympathetic tone and withdrawal of vagal tone; thus, HRV monitoring can be a non-invasive technique to assess stress level in animals especially related to animal welfare. Among several stress-induced factors, heat stress is one of the most serious causes of physiological damage to animals. The aim of this study was to assess the effects of heat stress on HRV in small ruminants under free-moving conditions. In three experimental periods (June, August, and October), inter-beat intervals in sheep and goats (three for each) in two consecutive days were measured. HRV parameters were calculated from the inter-beat interval data by three types of analyses: time domain, frequency domain, and non-linear analyses. The temperature–humidity index (THI) was used as an indicator of heat stress, and vectorial dynamic body acceleration (VeDBA) was calculated to quantify the physical activity of the animals tested. First, we investigated correlations of THI and VeDBA with HRV parameters; subsequently, THI was divided into five categories according to the values obtained (≤ 65, 65–70, 70–75, 75–80, and >80), and the effects of the THI categories on HRV parameters were investigated with and without correcting for the effects of physical activity based on the VeDBA. The results indicated that HRV significantly decreased with increasing THI and VeDBA. For non-linear HRV parameters that were corrected for the effects of physical activity, it was suggested that there would be a threshold of THI around 80 that strongly affected HRV; high heat stress can affect the autonomic balance of animals non-linearly by inducing the sympathetic nervous system. In conclusion, to assess psychophysiological conditions of unrestrained animals by HRV analysis, the confounding effect of physical activity on HRV should be minimized for a more precise interpretation of the results.


Health Scope ◽  
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Mehdi Asghari ◽  
Parvin Nassiri ◽  
Mohammad Reza Monazzam ◽  
Farideh Golbabaei ◽  
Ali Aliakbar Shamsipour ◽  
...  

MAUSAM ◽  
2021 ◽  
Vol 59 (1) ◽  
pp. 69-76
Author(s):  
M. EL-NOUBY ADAM ◽  
SAYED M. EL SHAZLY

2001 ◽  
Vol 281 (2) ◽  
pp. R591-R595 ◽  
Author(s):  
Ken Aoki ◽  
Dan P. Stephens ◽  
John M. Johnson

It is not clear whether the diurnal variation in the cutaneous circulatory response to heat stress is via the noradrenergic vasoconstrictor system or the nonadrenergic active vasodilator system. We conducted whole body heating experiments in eight male subjects at 0630 (AM) and 1630 (PM). Skin blood flow was monitored by laser-Doppler flowmetry at control sites and at sites pretreated with bretylium (BT) to block noradrenergic vasoconstriction. Noninvasive blood pressure was used to calculate cutaneous vascular conductance. The sublingual temperature (Tor) threshold for cutaneous vasodilation was significantly higher in PM at control and at BT-treated sites (both P < 0.01), suggesting the diurnal shift in threshold depends on the active vasodilator system. The slope of cutaneous vascular conductance as a percentage of its maximum with respect to Tor was significantly lower in AM at control sites only. Also, in the AM, the slope at control sites was significantly lower than that at BT-treated sites ( P < 0.05), suggesting that the diurnal change in the sensitivity of cutaneous vasodilation depends on vasoconstrictor system function. Overall, the diurnal variation in the reflex control of skin blood flow during heat stress involves both vasoconstrictor and active vasodilator systems.


2014 ◽  
Vol 97 (12) ◽  
pp. 7889-7904 ◽  
Author(s):  
M.J. Carabaño ◽  
K. Bachagha ◽  
M. Ramón ◽  
C. Díaz

Sign in / Sign up

Export Citation Format

Share Document