scholarly journals GROWTH AND PHYSIOLOGICAL ATTRIBUTES OF SOYBEAN SEEDLING (Glycine max L.) UNDER SALINITY STRESS

2012 ◽  
Vol 3 (8) ◽  
pp. 2325-2333
Author(s):  
W. El-Rodeny ◽  
Samira EL-Okkiah ◽  
A. Morsy ◽  
E. elghazaly ◽  
soad El-Sayed
2019 ◽  
Vol 19 ◽  
pp. 101173 ◽  
Author(s):  
Sivabalan Karthik ◽  
Gadamchetty Pavan ◽  
Veda Krishnan ◽  
Selvam Sathish ◽  
Markandan Manickavasagam

Author(s):  
Faheema Khan

The present study was conducted to evaluate the differences in photosynthetic parameters and antioxidant enzyme activity among two genotypes of soybean (Glycine max L.) in response to salinity stress. Ten-day-old seedlings, grown hydroponically, were treated with 0, 25, 50, 75, 100, 125 and 150 mM NaCl for 7 days and analysed for the traits as biomarkers for identification of salt-tolerant soybean genotype. It was observed that NaCl stress caused severe impairments in photosynthetic rate, chlorophyll fluorescence and chlorophyll content in both the genotypes, but the damage were much more pronounced in salt-sensitive genotype VL SOYA-47. Moreover, chlorophyll fluorescence measurements showed higher non-photochemical quenching in genotype VL SOYA-47 and lower in genotype VL SOYA-21. The antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) was observed much higher in VL SOYA-21 than in VL SOYA-47 at various levels of NaCl treatments. From the results, it could be suggested that VL SOYA-21 is the salt tolerant and VL SOYA-47 is a salt sensitive soybean genotype. The tolerance capacity of VL SOYA-21 against NaCl stress can be related with the ability of this genotype in possessing vital photosynthetic system and ROS scavenging capacity.


Author(s):  
Nurul Aini ◽  
Syekhfani Syekhfani ◽  
Wiwin Sumiya Dwi Yamika ◽  
Runik Dyah P. ◽  
Adi Setiawan

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhijia Gai ◽  
Lei Liu ◽  
Jingtao Zhang ◽  
Jingqi Liu ◽  
Lijun Cai

Abstract The objective of this study was to examine the effects of exogenous α-oxoglutarate on leaf proline accumulation, ammonium assimilation and photosynthesis of soybean when exposed to cold stress. To achieve this objective, exogenous α-oxoglutarate was sprayed to potted seedlings of Henong60 and Heinong48 at 0, 2.5, 5.0 and 7.5 mmol/L, identified as A0, A2.5, A5.0, and A7.5, respectively. Leaf samples were collected after cold stress of 24 h (S1 stage) and 48 h (S2 stage). The results indicated that exogenous α-oxoglutarate significantly enhanced leaf GS activity, NADP-GDH activity, glutamate content, proline content and photosynthesis of soybean seedling exposed to cold stress at S1 and S2 stages. The ammonium content in leaf was significantly decreased by exogenous α-oxoglutarate at both stages. 5.0 mmol/L of exogenous α-oxoglutarate is the optimum concentration in this study. Leaf proline content for Henong60 and Heinong48 at A5.0 was 37.53% and 17.96% higher than that at A0 at S1 stage, respectively. Proline content for Henong60 and Heinong48 increased by 28.82% and 12.41% at A5.0 and A0, respectively, at S2 stage. Those results suggested that exogenous α-oxoglutarate could alleviate the adverse effects of cold stress.


Molekul ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. 45 ◽  
Author(s):  
Juwarno Juwarno ◽  
Siti Samiyarsih

Current study was aimed to explore both anatomical and molecular responses of 3 soy bean cultivars (Mahameru, Slamet and Detam) which was given salinity stress. Data of the Mahameru cultivar showed that the widest  stomata  on upper epiderm 11.38 µm, the thickest upper epiderm was 10.71µm, but  the thickest of lower epiderm was only 9.98 µm, the highest density of stomata on lower epiderm was 13.66 per mm2 leaf area, and the thickest mesophyll was 110.37 µm. Molecular marker applying OPA-2 primer with RAPD technique showed the Detam and Slamet cultivars were having different bands one to each other even with the Mahameru cultivar. While the application of OPA-4 primer with the same technique showed there were no genetically different on Mahameru cultivar between control and  treatment 80 mM NaCl. The OPA-8 primer showed that the control block of Slamet cultivar  was different from either control block of others as well as treatment block of 80 mM NaCl. The use of OPA-18 primer showed that the Slamet cultivar of the control block  and so its 80 mM NaCl block was different from Detam and Mahameru, where the 500th base of Slamet cultivar did not have DNA band.


Sign in / Sign up

Export Citation Format

Share Document