Effect of Some Controlled Release Nitrogen Fertilizer (Coated Urea) on Growth, Yield, and Nitrogen Uptake of Corn Plants.

2016 ◽  
Vol 7 (8) ◽  
pp. 523-527
Author(s):  
A. El-Ghamry ◽  
A. Mosa ◽  
O. Zheiry
1991 ◽  
Vol 37 (2) ◽  
pp. 223-231 ◽  
Author(s):  
Yoshihiko Takahashi ◽  
Toshiaki Chinushi ◽  
Yoshifumi Nagumo ◽  
Tomio Nakano ◽  
Takuji Ohyama

1983 ◽  
Vol 101 (1) ◽  
pp. 185-205 ◽  
Author(s):  
P. J. Last ◽  
A. P. Draycott ◽  
A. B. Messem ◽  
D. J. Webb

SUMMARYDuring 1973–8 six field experiments examined the effect of 0, 41, 82, 124, 166 and 207 kg N/ha with and without irrigation on the growth, yield and quality of sugar beet. The culture of the crops was planned to produce a large yield in order to determine the optimal nitrogen application for the above-average crops which many growers are now seeking to produce. Ammonium nitrate was used as the nitrogen source, broadcast in one dose before sowing as was recommended practice in the early 1970s. The growth of the crop was monitored from the seedling stage to harvest in December, as was nitrogen uptake by the crop, and water removal from the soil using a neutron probe.In 3 years when the weather was dry after drilling, the fertilizer significantly depressed the number of plants which established but plant weights showed that some nitrogen fertilizer was needed early for rapid seedling growth. Changes in the method of applying fertilizer for sugar beet are therefore suggested and are being tested. Soil analyses in the plough layer during establishment (May–June) indicated an optimum concentration of mineral nitrogen of about 40 mg N/kg soil at this stage.Nitrogen fertilizer was very important for a high yield; throughout the growth of the crop it greatly increased total dry-matter yield and at final harvest this was reflected in sugar yield. Considering the six years together, sugar yield was linearly related to both dry-matter yield and total nitrogen uptake. However, within a year, increasing nitrogen uptake above 200 kg N/ha with nitrogen fertilizer did not increase sugar yield; maximum yields of sugar each year were normally obtained with 125 kg N/ha fertilizer or less, and irrigation had little effect on the optimum amount. Explanations for the lack of responsiveness of sugar beet to greater applications of nitrogen fertilizer are being sought in further more detailed analyses of the crop and its environment.


1988 ◽  
Vol 110 (2) ◽  
pp. 309-313 ◽  
Author(s):  
M. M. Panda ◽  
B. C. Ghosh ◽  
M. D. Reddy ◽  
B. B. Reddy

SummaryUnder intermediate deepwater (15–50 cm) conditions, sulphur-coated urea (SOU) drilled behind the plough at sowing was superior to other coated (neem, lac, coaltar) urea materials and broadcast incorporation of prilled urea in increasing the yield of direct-sown rice. In transplanted rice, the grain yield was highest with urea super granules (USG) placed 30 days after transplanting (DAT) followed by SOU broadcast incorporation at planting. N-use efficiency increased considerably with SCU drilled behind the plough or USG placed 20 days after sowing in shallow standing water in direct-sown rice and SCU broadcast incorporation or USG placed 30 DAT in transplanted rice.


Author(s):  
Yiman Jia ◽  
Zhengyi Hu ◽  
Yuxin Ba ◽  
Wenfang Qi

Abstract Background The use of biochar-based N fertilizers have been considered among the most effective strategy for reducing nitrogen loss and improving nitrogen use efficiency (NUE). However, effect and mechanism of biochar-coated urea (BCU) controlling the loss of nitrogen from soil and NUE are rarely reported. Methodology In this study, a 65-d culture pot experiment of oilseed rape was used to investigate the impact of BCU on nitrogen leaching, ammonia volatilization, soil nitrogen concentrations, soil pH, nitrogen uptake, NUE and oilseed rape biomass as compared with urea and urea combined with biochar at same nitrogen level. Results Results showed that the application of BCU could minimize nitrogen loss mainly by reducing nitrate leaching loss; which could be attributed to the slow-release performance of BCU, followed by biochar induced adsorption/fixation of nitrogen due to the porous nature and surface functional groups of biochar. However, the application of BCU enhanced ammonia volatilization due to the increase of soil NH4+–N concentration and pH value of microenvironment around urea by BCU. The application of BCU increased NUE by about 20% when compared with urea, since BCU reduced losses of nitrogen fertilizer and increased concentration of nitrogen in the soil as well as nitrogen uptake in oilseed rape. Furthermore, the reduction of nitrogen application by 20% when BCU served as a nitrogen source not only reduced nitrogen loss but significantly improved NUE, with no negative effect on the biomass of oilseed rape. Conclusion BCU can serve as a promising control release nitrogen fertilizer for reducing loss of nitrogen and increasing NUE. However further investigations are required to validate the dosage-effect relationship of BCU on crop yield at the field scale.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaodan Wang ◽  
Yaliang Wang ◽  
Yuping Zhang ◽  
Jing Xiang ◽  
Yikai Zhang ◽  
...  

AbstractDetermination of the optimal fertilization method is crucial to maximize nitrogen use efficiency and yield of different rice cultivars. Side-deep fertilization with controlled-release nitrogen, in conjunction with machine transplanting and subsequent topdressing, was applied to Indica–japonica hybrid rice ‘Yongyou1540’ (YY1540) and indica hybrid rice ‘Tianyouhuazhan’ (TYHZ). Four nitrogen treatments were applied in 2018 and 2019: traditional nitrogen application with quick-release nitrogen (T1), single-dose deep fertilization at transplanting with 100% controlled-release nitrogen (T2), and deep fertilization of 70% controlled-release nitrogen and topdressing of 30% quick nitrogen at tillering (T3), or at panicle initiation (T4). Side-deep fertilization reduced the fertilizer application frequency without causing yield loss, T4 enhanced the yield of YY1540 by increasing the number of productive tillers and number of spikelets per panicle compared with T1, T2 and T3. The yield of TYHZ showed no significant difference among treatments. The T4 treatment decreased the number of tillers at the tilling peak stage and increased the percentage productive tillers and number of differentiated spikelets. Compared with the other treatments, T4 increased dry matter accumulation and leaf area index during panicle initiation and grain ripening, and contributed to enhanced nitrogen uptake and nitrogen utilization in YY1540. On average, nitrogen uptake and utilization in YY1540 were highest in T4, but no significant differences among treatments were observed in TYHZ. Dry matter accumulation and nitrogen uptake from panicle initiation to heading of YY1540 were correlated with number of spikelets per panicle, but no significant correlations were observed for TYHZ. Supplementary topdressing with quick-release nitrogen at the panicle initiation stage was required to increase yield of indica–japonica hybrid rice, whereas single-dose deep fertilization with controlled-release nitrogen is satisfactory for the indica hybrid cultivar.


Author(s):  
Iqra Ghafoor ◽  
Muhammad Habib-ur-Rahman ◽  
Muqarrab Ali ◽  
Muhammad Afzal ◽  
Wazir Ahmed ◽  
...  

AbstractHigher demands of food led to higher nitrogen application to promote cropping intensification and produce more which may have negative effects on the environment and lead to pollution. While sustainable wheat production is under threat due to low soil fertility and organic matter due to nutrient degradation at high temperatures in the region. The current research explores the effects of different types of coated urea fertilizers and their rates on wheat crop under arid climatic conditions of Pakistan. Enhancing nitrogen use efficiency by using eco-friendly coated urea products could benefit growers and reduce environmental negative effects. A trial treatment included N rates (130, 117, 104, and 94 kg ha-1) and coated urea sources (neem coated, sulfur coated, bioactive sulfur coated) applied with equal quantity following split application method at sowing, 20 and 60 days after sowing (DAS). The research was arranged in a split-plot design with randomized complete block design had three replicates. Data revealed that bioactive sulfur coated urea with the application of 130 kg N ha-1 increased chlorophyll contents 55.0 (unit value), net leaf photosynthetic rate (12.51 μmol CO2 m-2 s-1), and leaf area index (5.67) significantly. Furthermore, research elucidates that bioactive sulfur urea with the same N increased partial factor productivity (43.85 Kg grain Kg-1 N supplied), nitrogen harvest index (NHI) 64.70%, and partial nutrient balance (1.41 Kg grain N content Kg-1 N supplied). The neem-coated and sulfur-coated fertilizers also showed better results than monotypic urea. The wheat growth and phenology significantly improved by using coated fertilizers. The crop reached maturity earlier with the application of bioactive sulfur-coated urea than others. Maximum total dry matter 14402 (kg ha-1) recorded with 130 kg N ha-1application. Higher 1000-grain weight (33.66 g), more number of grains per spike (53.67), grain yield (4457 kg ha-1), and harvest index (34.29%) were obtained with optimum N application 130 kg ha-1 (recommended). There is a significant correlation observed for growth, yield, and physiological parameters with N in the soil while nitrogen-related indices are also positively correlated. The major problem of groundwater contamination with nitrate leaching is also reduced by using coated fertilizers. Minimum nitrate concentration (7.37 and 8.77 kg ha-1) was observed with the application of bioactive sulfur-coated and sulfur-coated urea with lower N (94 kg ha-1), respectively. The bioactive sulfur-coated urea with the application of 130 kg N ha-1 showed maximum phosphorus 5.45 mg kg-1 and potassium 100.67 mg kg-1 in the soil. Maximum nitrogen uptake (88.20 kg ha-1) is showed by bioactive sulfur coated urea with 130 kg N ha-1 application. The total available NPK concentrations in soil showed a significant correlation with physiological attributes; grain yield; harvest index; and nitrogen use efficiency components, i.e., partial factor productivity, partial nutrient balance, and nitrogen harvest index. This research reveals that coating urea with secondary nutrients, neem oil, and microbes are highly effective techniques for enhancing fertilizer use efficiency and wheat production in calcareous soils and reduced N losses under arid environments.


2012 ◽  
Vol 129 (2) ◽  
pp. 559-567 ◽  
Author(s):  
Xiaoyun Qiu ◽  
Dacai Zhu ◽  
Shuming Tao ◽  
Chao Chen ◽  
Xueqin Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document