IMPACT OF LESSEPSIAN MIGRATION OF MARINE SPECIES THROUGH SUEZ CANAL LOCATIONS ON GENETIC DIVERSITY OF SEABASS SPECIES USING DIFFERENT MOLECULAR TECHNIQUES

2020 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Tarik Rabie ◽  
Deina Ahmed ◽  
Zizi Elbialy
2012 ◽  
Vol 92 (6) ◽  
pp. 1121-1133 ◽  
Author(s):  
S. C. Debnath ◽  
Y. L. Siow ◽  
J. Petkau ◽  
D. An ◽  
N. V. Bykova

Debnath, S. C., Siow, Y. L., Petkau, J., An, D. and Bykova, N. V. 2012. Molecular markers and antioxidant activity in berry crops: Genetic diversity analysis. Can. J. Plant Sci. 92: 1121–1133. An improved understanding of important roles of dietary fruits in maintaining human health has led to a dramatic increase of global berry crop production. Berry fruits contain relatively high levels of vitamin C, cellulose and pectin, and produce anthocyanins, which have important therapeutic values, including antitumor, antiulcer, antioxidant and anti-inflammatory activities. There is a need to develop reliable methods to identify berry germplasm and assess genetic diversity/relatedness for dietary properties in berry genotypes for practical breeding purposes through genotype selection in a breeding program for cultivar development, and proprietary-rights protection. The introduction of molecular biology techniques, such as DNA-based markers, allows direct comparison of different genetic materials independent of environmental influences. Significant progress has been made in diversity analysis of wild cranberry, lowbush blueberry, lingonberry and cloudberry germplasm, and in strawberry and raspberry cultivars and advanced breeding lines developed in Canada. Inter simple sequence repeat (ISSR) markers detected an adequate degree of polymorphism to differentiate among berry genotypes, making this technology valuable for cultivar identification and for the more efficient choice of parents in the current berry improvement programs. Although multiple factors affect antioxidant activity, a wide range of genetic diversity has been reported in wild and cultivated berry crops. Diversity analysis based on molecular markers did not agree with those from antioxidant activity. The paper also discusses the issues that still need to be addressed to utilize the full potential of molecular techniques including expressed sequence tag-polymerase chain reaction (EST-PCR) analysis to develop improved environment-friendly berry cultivars suited to the changing needs of growers and consumers.


2016 ◽  
Vol 44 (2) ◽  
pp. 431-436 ◽  
Author(s):  
Masoumeh YOUSEFIAZARKHANIAN ◽  
Ali ASGHARI ◽  
Jafar AHMADI ◽  
Behvar ASGHARI ◽  
Ali Ashraf JAFARI

The genus Salvia includes an enormous assemblage of nearly 1,000 species dispersed around the world. Due to possible threats to this genus, there is an immediate requirement to evaluate the diversity of its wild populations. ISSR and RAPD molecular techniques were used to evaluate the genetic relationships among twenty-one ecotypes of eight Salvia species. Amplification of genomic DNA using 23 primers (15 RAPD and eight ISSR) produced 280 bands, of which 91% were polymorphic. The results of marker parameters showed no clear difference between two marker systems. It was generally observed that both ISSR and RAPD markers had similar efficiency in detecting genetic polymorphisms with remarkable ability to differentiate the closely related ecotypes of Salvia. Nei’s similarity coefficients for these techniques ranged from 0.48 to 0.98. Based on the results of clustering, PCoA and AMOVA, the genetic diversity between and within species was confirmed. So, conservation and domestication of the genus Salvia must be due to levels of genetic variations.


2021 ◽  
Vol 288 (1945) ◽  
pp. 20202398
Author(s):  
Eleni L. Petrou ◽  
Angela P. Fuentes-Pardo ◽  
Luke A. Rogers ◽  
Melissa Orobko ◽  
Carolyn Tarpey ◽  
...  

The timing of reproduction influences key evolutionary and ecological processes in wild populations. Variation in reproductive timing may be an especially important evolutionary driver in the marine environment, where the high mobility of many species and few physical barriers to migration provide limited opportunities for spatial divergence to arise. Using genomic data collected from spawning aggregations of Pacific herring ( Clupea pallasii ) across 1600 km of coastline, we show that reproductive timing drives population structure in these pelagic fish. Within a specific spawning season, we observed isolation by distance, indicating that gene flow is also geographically limited over our study area. These results emphasize the importance of considering both seasonal and spatial variation in spawning when delineating management units for herring. On several chromosomes, we detected linkage disequilibrium extending over multiple Mb, suggesting the presence of chromosomal rearrangements. Spawning phenology was highly correlated with polymorphisms in several genes, in particular SYNE2 , which influences the development of retinal photoreceptors in vertebrates. SYNE2 is probably within a chromosomal rearrangement in Pacific herring and is also associated with spawn timing in Atlantic herring ( Clupea harengus ). The observed genetic diversity probably underlies resource waves provided by spawning herring. Given the ecological, economic and cultural significance of herring, our results support that conserving intraspecific genetic diversity is important for maintaining current and future ecosystem processes.


HortScience ◽  
2018 ◽  
Vol 53 (9) ◽  
pp. 1266-1270 ◽  
Author(s):  
Nader R. Abdelsalam ◽  
Hayssam M. Ali ◽  
Mohamed Z.M. Salem ◽  
Elsayed G. Ibrahem ◽  
Mohamed S. Elshikh

Mango (Mangifera indica L.) is a fruit crops belong to the family Anacardiaceae and is the oldest cultivated tree worldwide. Cultivars maintained in Egypt have not been investigated previously. Mango was first brought to Egypt from South Asia. Morphological and molecular techniques were used to identify the genetic diversity within 28 mango cultivars. SSR and EST-SSR were used for optimizing germplasm management of mango cultivars. Significant variations were observed in morphological characteristics and genetic polymorphism, as they ranged from 0.71% to 100%. High diversity was confirmed as a pattern of morphological and genotypes data. Data from the present study may be used to calculate the mango relationship and diversity currently grown in Egypt.


Caryologia ◽  
2021 ◽  
Vol 74 (2) ◽  
pp. 149-161
Author(s):  
Jing Ma ◽  
Wenyan Fan ◽  
Shujun Jiang ◽  
Xiling Yang ◽  
Wenshuai Li ◽  
...  

Genetic diversity studies are essential to understand the conservation and management of plant resources in any environment. The genus Consolida (DC.) Gray (Ranuculaceae) belongs to tribe Delphinieae. It comprises approximately 52 species, including the members of the genus Aconitella Spach. No detailed Random Amplified Polymorphic DNA (RAPD) studies were conducted to study Consolida genetic diversity. Therefore, we collected and analyzed 19 species from 12 provinces of regions. Overall, one hundred and twenty-seven plant specimens were collected. We showed significant differences in quantitative morphological characters in plant species. Unweighted pair group method with arithmetic mean and principal component analysis (PCA) divided Consolida species into two groups. All primers produced polymorphic amplicons though the extent of polymorphism varied with each primer. The primer OPA-06 was found to be most powerful and efficient as it generated a total of 24 bands of which 24 were polymorphic. The Mantel test showed correlation (r = 0.34, p=0.0002) between genetic and geographical distances. We reported high genetic diversity, which clearly shows the Consolida species can adapt to changing environments since high genetic diversity is linked to species adaptability. Present results highlighted the utility of RAPD markers and morphometry methods to investigate genetic diversity in Consolida species. Our aims were 1) to assess genetic diversity among Consolida species 2) is there a correlation between species genetic and geographical distance? 3) Genetic structure of populations and taxa.


2019 ◽  
Vol 18 (5) ◽  
pp. 141-152
Author(s):  
Anna Lisek ◽  
Jerzy Lisek

The study shows genetic diversity of 38 Vitis vinifera L. cultivars and hybrids originating in North America and Europe, including cultivars selected in Poland, which have not been characterized with the use of DNA markers yet. The agrobiological features of the genotypes selected for testing, indicate that they may be useful for the breeding of new cultivars and grape production. The use of 12 ISSR primers allowed to obtain 94.4% of polymorphism. The polymorphic information content (PIC) value was high and varied between 0.829 and 0.953 with an average of 0.897. The resolving power (Rp) ranged between 3.678 and 8.892 with an average of 6.347. Primers UBC 809, UBC 810, UBC 812, UBC 855, UBC 891 and UBC 810 were found to be highly effective (informative). Similarity coefficient ranged between 0.167 and 1.0, which indicates high degree of diversity of tested  grape cultivars. Tested cultivars were grouped in 3 main clusters; one of them was further divided into 6 subclusters. ‘Pannonia Kincse’ and ‘Danmarpa Polonia’ were not differentiated. Phenotypic differences among those two cultivars suggest that ‘Danmarpa Polonia’ might be a clone of ‘Pannonia Kincse’ and other molecular techniques must be used to differentiate them. Morphological and agrobiological characters of cultivars support the results obtained by ISSR markers.


2017 ◽  
Vol 63 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Aline Weber Medeiros ◽  
Derek Blaese Amorim ◽  
Maurício Tavares ◽  
Tiane Martin de Moura ◽  
Ana Claudia Franco ◽  
...  

Analyses using culture-independent molecular techniques have improved our understanding of microbial composition. The aim of this work was to identify and quantify enterococci in fecal samples of wild marine species using real-time quantitative PCR. Seven Enterococcus species were examined in fecal DNA of South American fur seals (Arctocephalus australis), Subantarctic fur seals (Arctocephalus tropicalis), green turtles (Chelonia mydas), Magellanic penguins (Spheniscus magellanicus), snowy-crowned tern (Sterna trudeaui), white-backed stilt (Himantopus melanurus), white-chinned petrels (Procellaria aequinoctialis), red knot (Calidris canutus), and black-browed albatross (Thalassarche melanophris). All Enterococcus species evaluated were detected in all fecal samples of wild marine species, with a concentration ranging between 106 and 1012 copies/ng of total DNA. Differences in the enterococci distribution were observed. Enterococcus faecalis and Enterococcus mundtii were most abundant in marine mammals. Enterococcus faecalis was frequent in green turtle, Magellanic penguin, snowy-crowned tern, red knot, and black-browed albatross. Enterococcus hirae and Enterococcus gallinarum showed elevated occurrence in white-backed stilt, and Enterococcus faecium in white-chinned petrel. This study showed highest diversity of enterococci in feces of wild marine species than currently available data, and reinforced the use of culture-independent analysis to help us to enhance our understanding of enterococci in gastrointestinal tracts of wild marine species.


Sign in / Sign up

Export Citation Format

Share Document