Effects of Amlodipine on Exercise Performance and Cardiovascular and Skeletal Muscle Function in Physically Active Hypertensive Patients

1996 ◽  
Vol 12 (3) ◽  
pp. 135-145 ◽  
Author(s):  
H.C. Gillies ◽  
E.W. Derman ◽  
T.D. Noakes
2021 ◽  
Vol 30 (3) ◽  
pp. 278-287
Author(s):  
Jinkyung Cho ◽  
Soo-Hyun Park ◽  
Hong-Sun Song

PURPOSE: Vitamin D plays important roles in calcium homeostasis and bone metabolism. Since vitamin D receptors (VDRs) are located in a variety of organs, including skeletal muscle, vitamin D has potentially widespread effects. The purpose of this review was to summarize the current understanding of the effects of vitamin D on muscle function and exercise performance in athletes.METHODS: In this narrative review, we summarized previous studies by searching the literature in the PubMed, Google Scholar, and Science Direct databases.RESULTS: Vitamin D has been shown to regulate multiple actions in skeletal muscle tissue, such as myocyte proliferation and growth via genomic and non-genomic molecular pathways. Higher levels of vitamin D are associated with improved skeletal muscle function and exercise performance. Moreover, in some studies, vitamin D supplementation has beneficial effects on muscle strength in athletes, especially those who are vitamin D-deficient.CONCLUSIONS: Vitamin D appears to have beneficial effects on muscle and exercise performance in athletes. However, more studies are needed to clarify the action and dosage of vitamin D in athletes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Homer-Bouthiette ◽  
L. Xiao ◽  
Marja M. Hurley

AbstractFibroblast growth factor 2 (FGF2) is important in musculoskeletal homeostasis, therefore the impact of reduction or Fgf2 knockout on skeletal muscle function and phenotype was determined. Gait analysis as well as muscle strength testing in young and old WT and Fgf2KO demonstrated age-related gait disturbances and reduction in muscle strength that were exacerbated in the KO condition. Fgf2 mRNA and protein were significantly decreased in skeletal muscle of old WT compared with young WT. Muscle fiber cross-sectional area was significantly reduced with increased fibrosis and inflammatory infiltrates in old WT and Fgf2KO vs. young WT. Inflammatory cells were further significantly increased in old Fgf2KO compared with old WT. Lipid-related genes and intramuscular fat was increased in old WT and old Fgf2KO with a further increase in fibro-adipocytes in old Fgf2KO compared with old WT. Impaired FGF signaling including Increased β-Klotho, Fgf21 mRNA, FGF21 protein, phosphorylated FGF receptors 1 and 3, was observed in old WT and old Fgf2KO. MAPK/ ERK1/2 was significantly increased in young and old Fgf2KO. We conclude that Fgf2KO, age-related decreased FGF2 in WT mice, and increased FGF21 in the setting of impaired Fgf2 expression likely contribute to impaired skeletal muscle function and sarcopenia in mice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Z. Darabseh ◽  
Thomas M. Maden-Wilkinson ◽  
George Welbourne ◽  
Rob C. I. Wüst ◽  
Nessar Ahmed ◽  
...  

AbstractCigarette smoking has a negative effect on respiratory and skeletal muscle function and is a risk factor for various chronic diseases. To assess the effects of 14 days of smoking cessation on respiratory and skeletal muscle function, markers of inflammation and oxidative stress in humans. Spirometry, skeletal muscle function, circulating carboxyhaemoglobin levels, advanced glycation end products (AGEs), markers of oxidative stress and serum cytokines were measured in 38 non-smokers, and in 48 cigarette smokers at baseline and after 14 days of smoking cessation. Peak expiratory flow (p = 0.004) and forced expiratory volume in 1 s/forced vital capacity (p = 0.037) were lower in smokers compared to non-smokers but did not change significantly after smoking cessation. Smoking cessation increased skeletal muscle fatigue resistance (p < 0.001). Haemoglobin content, haematocrit, carboxyhaemoglobin, total AGEs, malondialdehyde, TNF-α, IL-2, IL-4, IL-6 and IL-10 (p < 0.05) levels were higher, and total antioxidant status (TAS), IL-12p70 and eosinophil numbers were lower (p < 0.05) in smokers. IL-4, IL-6, IL-10 and IL-12p70 had returned towards levels seen in non-smokers after 14 days smoking cessation (p < 0.05), and IL-2 and TNF-α showed a similar pattern but had not yet fully returned to levels seen in non-smokers. Haemoglobin, haematocrit, eosinophil count, AGEs, MDA and TAS did not significantly change with smoking cessation. Two weeks of smoking cessation was accompanied with an improved muscle fatigue resistance and a reduction in low-grade systemic inflammation in smokers.


2009 ◽  
Vol 602 (1) ◽  
pp. 143-147 ◽  
Author(s):  
Benoît Giannesini ◽  
Marguerite Izquierdo ◽  
Yann Le Fur ◽  
Patrick J. Cozzone ◽  
Marc Verleye ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Michael D. Tarpey ◽  
Adam J. Amorese ◽  
Elizabeth R. LaFave ◽  
Everett C. Minchew ◽  
Kelsey H. Fisher-Wellman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document