scholarly journals Propagation dynamics and causes of hydrological drought in response to meteorological drought at seasonal timescales

2021 ◽  
Author(s):  
Lan Ma ◽  
Qiang Huang ◽  
Shengzhi Huang ◽  
Dengfeng Liu ◽  
Guoyong Leng ◽  
...  

Abstract According to the widely accepted definition of drought, meteorological and hydrological droughts originally develop from rainfall and runoff deficits, respectively. Runoff deficit is mainly derived from rainfall deficit, and the propagation from meteorological drought to hydrological drought is critical for agricultural water management. Nevertheless, the characteristics and dynamics of drought propagation in the spatiotemporal scale remain unresolved. To this end, the characteristics and dynamics of drought propagation in different seasons and their linkages with key forcing factors are evaluated. In this study, meteorological and hydrological droughts are characterized by the Standardized Precipitation Index (SPI) and the Standardized Runoff Index (SRI), respectively. Propagation time is identified by the corresponding timescale of the maximum correlation coefficient between the SPI and the SRI. Then, a 20-year sliding window is adopted to explore the propagation dynamic in various seasons. Furthermore, the multiple linear regression model is established to quantitatively explore the influence of meteorological factors, underlying surface features and teleconnection factors on the propagation time variations. The Wei River Basin, a typical Loess Plateau watershed in China, is selected as a case study. Results indicate the following: (1) the propagation time from meteorological to hydrological drought is shorter in summer (2 months) and autumn (3 months), whereas it is longer in spring (8 months) and winter (13 months). Moreover, the propagation rates exhibit a decreasing trend in warm seasons, which, however, show an increasing trend in cold seasons; (2) a significant slowing propagation in autumn is mainly caused by the decreasing soil moisture and precipitation, whereas the non-significant tendency in summer is generally induced by the offset between insignificant increasing precipitation and significant decreasing soil moisture; (3) the replenishment from streamflow to groundwater in advance prompts the faster propagation from meteorological to hydrological drought in spring and winter and (4) teleconnection factors have strong influences on the propagation in autumn, in which Arctic Oscillation, El Niño-Southern Oscillation and Pacific Decadal Oscillation mainly affect participation, arid index and soil moisture, thereby impacting drought propagation.

2021 ◽  
Author(s):  
Lan Ma ◽  
Qiang Huang ◽  
Shengzhi Huang ◽  
Dengfeng Liu ◽  
Guoyong Leng ◽  
...  

<p>According to widely accepted definition of drought, meteorological and hydrological droughts originally develop from rainfalls and runoffs deficits, respectively. Runoffs deficit is mainly derived from rainfalls deficit. Therefore, hydrological drought is essentially propagated from meteorological drought, which is critical for agricultural water management. Investigation of the propagation from meteorological to hydrological drought is important for drought early warning, preparedness and mitigation. Nevertheless, the characteristics and dynamic of drought propagation in spatiotemporal scale remain unresolved. To this end, the characteristics and dynamic of drought propagation in different seasons and their linkages with key forcing factors are evaluated. In this study, the meteorological drought and hydrological drought are characterized by Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI), respectively. The propagation time is identified by the corresponding timescale of the maximum correlation coefficient between SPI and SRI. Then, a 20-year sliding window is adopted to explore the propagation dynamic in various seasons. Furthermore, the multiple linear regression model (MLR) is established to quantitatively explore the influence of meteorological factors, underlying surface features and teleconnection factors on the propagation time variations. The Wei River Basin (WRB), which is a typical Loess Plateau watershed in China, is selected as a case study. Results indicate that: (1) the propagation time from meteorological to hydrological drought is shorter in summer (2 months) and autumn (3 months), whilst that is longer in spring (8 months) and winter (13 months). Moreover, the propagation rates exhibit decreasing trend in warm seasons, which however show increasing trend in cold seasons; (2) a significant slowing propagation in autumn is mainly caused by the decreasing soil moisture and precipitation, while the non-significant tendency in summer is generally induced by the offset between insignificant increasing precipitation and significant decreasing soil moisture; (3) the replenishment from streamflow to groundwater in advance prompts the faster propagation from meteorological to hydrological drought in spring and winter; (4) teleconnection factors have strong influences on the propagation in autumn, in which Arctic Oscillation (AO), El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) mainly affect participation, arid index and soil moisture, thereby impacting drought propagation.</p>


2018 ◽  
Vol 22 (9) ◽  
pp. 4649-4665 ◽  
Author(s):  
Anouk I. Gevaert ◽  
Ted I. E. Veldkamp ◽  
Philip J. Ward

Abstract. Drought is a natural hazard that occurs at many temporal and spatial scales and has severe environmental and socioeconomic impacts across the globe. The impacts of drought change as drought evolves from precipitation deficits to deficits in soil moisture or streamflow. Here, we quantified the time taken for drought to propagate from meteorological drought to soil moisture drought and from meteorological drought to hydrological drought. We did this by cross-correlating the Standardized Precipitation Index (SPI) against standardized indices (SIs) of soil moisture, runoff, and streamflow from an ensemble of global hydrological models (GHMs) forced by a consistent meteorological dataset. Drought propagation is strongly related to climate types, occurring at sub-seasonal timescales in tropical climates and at up to multi-annual timescales in continental and arid climates. Winter droughts are usually related to longer SPI accumulation periods than summer droughts, especially in continental and tropical savanna climates. The difference between the seasons is likely due to winter snow cover in the former and distinct wet and dry seasons in the latter. Model structure appears to play an important role in model variability, as drought propagation to soil moisture drought is slower in land surface models (LSMs) than in global hydrological models, but propagation to hydrological drought is faster in land surface models than in global hydrological models. The propagation time from SPI to hydrological drought in the models was evaluated against observed data at 127 in situ streamflow stations. On average, errors between observed and modeled drought propagation timescales are small and the model ensemble mean is preferred over the use of a single model. Nevertheless, there is ample opportunity for improvement as substantial differences in drought propagation are found at 10 % of the study sites. A better understanding and representation of drought propagation in models may help improve seasonal drought forecasting as well as constrain drought variability under future climate scenarios.


2018 ◽  
Author(s):  
Anouk I. Gevaert ◽  
Ted I. E. Veldkamp ◽  
Philip J. Ward

Abstract. Drought is a natural hazard that occurs at many temporal and spatial scales and has severe environmental and socio-economic impacts across the globe. The impacts of drought change as drought evolves from precipitation deficits to deficits in soil moisture or streamflow. Here, we quantified the time taken for drought to propagate from meteorological drought to soil moisture drought, and from meteorological drought to hydrological drought. We did this by cross-correlating the Standardized Precipitation Index (SPI) against standardized indices of soil moisture, runoff, and streamflow from an ensemble of global hydrological models forced by a consistent meteorological dataset. Drought propagation is strongly related to climate, occurring at sub-seasonal timescales in tropical climates and at up to multi-annual timescales in continental and arid climates. Winter droughts are usually related to longer SPI accumulation periods than summer droughts, especially in continental and tropical savanna climates. The difference between the seasons is likely due to winter snow cover in the former and distinct wet and dry seasons in the latter. Model structure appears to play an important role in model variability, as drought propagation to soil moisture drought is slower in land surface models than in global hydrological models, but propagation to hydrological drought is faster in land surface models than in global hydrological models. The propagation time from SPI to hydrological drought in the models was evaluated against observed data at 297 in-situ streamflow stations. On average, errors between observed and modeled drought propagation timescales are small and the model ensemble mean is preferred over the use of a single model. Nevertheless, there is ample opportunity for improvement as substantial differences in drought propagation are found at 20 % of the study sites. A better understanding and representation of drought propagation in models may help improve seasonal drought forecasting as well as constrain drought variability under future climate scenarios.


Author(s):  
Lin Wang ◽  
Jianyun Zhang ◽  
Amgad Elmahdi ◽  
Zhangkang Shu ◽  
Yinghui Wu ◽  
...  

Abstract In the context of global warming and increasing human activities, the acceleration of the water cycle will increase the risk of basin drought. In this study, to analyze the spatial and temporal evolution characteristics of hydrological and meteorological droughts over the Hanjiang River Basin (HRB); the Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI) were selected and applied for the period 1961–2018. In addition, the cross-wavelet method was used to discuss the relationship between hydrological drought and meteorological droughts. The results and analysis indicated that: (1) the meteorological drought in the HRB showed a complex cyclical change trend of flood-drought-flood from 1961 to 2018. The basin drought began to intensify from 1990s and eased in 2010s. The characteristics of drought evolution in various regions are different based on scale. (2) During the past 58 years, the hydrological drought in the HRB has shown a significant trend of intensification, particularly in autumn season. Also, the hydrological droughts had occurred frequently since the 1990s, and there were also regional differences in the evolution characteristics of drought in various regions. (3) Reservoir operation reduces the frequency of extreme hydrological drought events. The effect of reducing the duration and intensity of hydrological drought events by releasing water from the reservoir is most obvious at Huangjiagang Station, which is the nearest to Danjiangkou Reservoir. (4) The hydrological drought and meteorological drought in the HRB have the strongest correlation on the yearly scale. After 1990, severe human activities and climate change are not only reduced the correlation between hydrological drought and meteorological drought in the middle and lower reaches of the basin, but also reduced the lag time between them. Among them, the hydrological drought in the upper reaches of the basin lags behind the meteorological drought by 1 month, and the hydrological drought in the middle and lower reaches of the basin has changed from 2 months before 1990 to 1 month lagging after 1990.


2019 ◽  
Vol 20 (1) ◽  
pp. 59-77 ◽  
Author(s):  
Feng Ma ◽  
Lifeng Luo ◽  
Aizhong Ye ◽  
Qingyun Duan

Abstract Meteorological and hydrological droughts can bring different socioeconomic impacts. In this study, we investigated meteorological and hydrological drought characteristics and propagation using the standardized precipitation index (SPI) and standardized streamflow index (SSI), over the upstream and midstream of the Heihe River basin (UHRB and MHRB, respectively). The correlation analysis and cross-wavelet transform were adopted to explore the relationship between meteorological and hydrological droughts in the basin. Three modeling experiments were performed to quantitatively understand how climate change and human activities influence hydrological drought and propagation. Results showed that meteorological drought characteristics presented little difference between UHRB and MHRB, while hydrological drought events are more frequent in the MHRB. In the UHRB, there were positive relationships between meteorological and hydrological droughts, whereas drought events became less frequent but longer when meteorological drought propagated into hydrological drought. Human activities have obviously changed the positive correlation to negative in the MHRB, especially during warm and irrigation seasons. The propagation time varied with seasonal climate characteristics and human activities, showing shorter values due to higher evapotranspiration, reservoir filling, and irrigation. Quantitative evaluation showed that climate change was inclined to increase streamflow and propagation time, contributing from −57% to 63%. However, more hydrological droughts and shorter propagation time were detected in the MHRB because human activities play a dominant role in water consumption with contribution rate greater than (−)89%. This study provides a basis for understanding the mechanism of hydrological drought and for the development of improved hydrological drought warning and forecasting system in the HRB.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1000
Author(s):  
Muhammad Nouman Sattar ◽  
Muhammad Jehanzaib ◽  
Ji Eun Kim ◽  
Hyun-Han Kwon ◽  
Tae-Woong Kim

Drought is one of the most destructive natural hazards and results in negative effects on the environment, agriculture, economics, and society. A meteorological drought originates from atmospheric components, while a hydrological drought is influenced by properties of the hydrological cycle and generally induced by a continuous meteorological drought. Several studies have attempted to explain the cross dependencies between meteorological and hydrological droughts. However, these previous studies did not consider the propagation of drought classes. Therefore, in this study, to consider the drought propagation concept and to probabilistically assess the meteorological and hydrological drought classes, characterized by the Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI), respectively, we employed the Markov Bayesian Classifier (MBC) model that combines the procedure of iteration of feature extraction, classification, and application for assessment of drought classes for both SPI and SRI. The classification results were compared using the observed SPI and SRI, as well as with previous findings, which demonstrated that the MBC was able to reasonably determine drought classes. The accuracy of the MBC model in predicting all the classes of meteorological drought varies from 36 to 76% and in predicting all the classes of hydrological drought varies from 33 to 70%. The advantage of the MBC-based classification is that it considers drought propagation, which is very useful for planning, monitoring, and mitigation of hydrological drought in areas having problems related to hydrological data availability.


Author(s):  
Nina Zhu ◽  
Jianhua Xu ◽  
Gang Zeng ◽  
Xianzhong Cao

Under the controversial background of “Northwestern China is gradually developing towards warm and humid”, how hydrological drought responds to meteorological drought at the endorheic basin is of great significance. To address this problem, we first analyzed the spatiotemporal variation of meteorological and hydrological droughts at Tarim Basin River from 1960 to 2014 by using the daily standardized precipitation index (SPI) and daily standardized terrestrial water storage index (SWSI) based on the reanalysis data. Thereafter, we explored the spatiotemporal response of hydrological drought to meteorological drought on the multi-time scale by using the cross-wavelet transform method, Ensemble Empirical Mode Decomposition (EEMD), and correlation analysis. We find that: (1) both meteorological and hydrological droughts signified a gradually weakened trend in time; (2) meteorological and hydrological drought have significant resonance periods on the 10-month time scale and the 8-year time scale; (3) hydrological drought generally lags behind the meteorological drought by 7 days in plains areas, while it can last as long as several months or even a year in mountainous areas.


2021 ◽  
Author(s):  
Emilio Romero-Jiménez ◽  
Matilde García-Valdecasas Ojeda ◽  
Patricio Yeste ◽  
Juan José Rosa-Cánovas ◽  
Sonia Raquel Gámiz-Fortis ◽  
...  

<p>Society is facing a challenge due to climate change. Particularly, there are several areas where droughts will impact economic activities and landscapes, and decisions must be made in order to alleviate these effects. River flow regulation plays a major role in this regard, since it reduces the existing correlation between meteorological and hydrological droughts.<br>The aim of this work is to investigate the response of hydrological drought to meteorological drought under the influence of reservoir. To this effect, the Guadalquivir River Basin, in the southern Iberian Peninsula, has been studied. The aridity of this basin is expected to increase in the future, with longer and more severe meteorological droughts. Moreover, the Guadalquivir presents a strong regulation along its course. Therefore, streamflow and precipitation data have been analysed. With these data, meteorological and hydrological drought indices, such as the Standardized Precipitation Index (SPI), the Standardized Precipitation-Evapotranspiration Index (SPEI), and the Standardized Streamflow Index (SSI), have been calculated, focusing on how they correlate based on time scale and spatial distribution. The meteorological drought indices have been calculated in varying time scales, showing that the hydrological response is different depending on characteristics such as orography and river section. The correlation between the indices is generally strong in the study area, but the results show that its importance decreases as the streamflow becomes more regulated.<br>The results of this study could be added to the current tools for decision making in the economic fields that are most affected by droughts. Since droughts are a major effect of climate change in the area, this study could also act as a first step for the study of future droughts through climate and hydrological models.<br>Keywords: Drought indices, river regulation, hydrological response.<br>ACKNOWLEDGEMENTS: This work was funded by the FEDER / Junta de Andalucía - Ministry of Economy and Knowledge / Project [B-RNM-336-UGR18], and by the Spanish Ministry of Economy, Industry and Competitiveness, with additional support from the European Community Funds (FEDER) [CGL2017-89836-R].</p>


2019 ◽  
Vol 50 (5) ◽  
pp. 1230-1250 ◽  
Author(s):  
Majid Dehghani ◽  
Bahram Saghafian ◽  
Mansoor Zargar

Abstract Hydrological drought forecasting is considered a key component in water resources risk management. As sustained meteorological drought may lead to hydrological drought over time, it is conceptually feasible to capitalize on the dependency between the meteorological and hydrological droughts while trying to forecast the latter. As such, copula functions are powerful tools to study the propagation of meteorological droughts into hydrological droughts. In this research, monthly precipitation and discharge time series were used to determine Standardized Precipitation Index (SPI) and Standardized Hydrological Drought Index (SHDI) at different time scales which quantify the state of meteorological and hydrological droughts, respectively. Five Archimedean copula functions were adopted to model the dependence structure between meteorological/hydrological drought indices. The Clayton copula was identified for further investigation based on the p-value. Next, the conditional probability and the matrix of forecasted class transitions were calculated. Results indicated that the next month's SHDI class forecasting is promising with less than 10% error. Moreover, extreme and severe meteorological drought classes lead to hydrological drought condition with a more than 70% probability. Other classes of meteorological drought/wet conditions lead to normal hydrological (drought) condition with less than 50% probability and to wet hydrological condition with over 20% probability.


2020 ◽  
Vol 2020 ◽  
pp. 1-26
Author(s):  
Fanglei Zhong ◽  
Qingping Cheng ◽  
Ping Wang

Understanding the evolution and propagation of different drought types is crucial to reduce drought hazards in arid and semiarid regions. Here, Standardized Precipitation Index (SPI), Streamflow Drought Index (SDI), and Vegetation Condition Index (VCI) were used to investigate the spatiotemporal variation of different drought types and correlations between Pre (Pre-R)/post (Pos-R)-reservoir. Results showed that the average peak/intensity/duration/severity of meteorological droughts (MD) were greater in the Pre-R than in the Pos-R period in the upstream Heihe River Basin (UHRB), while there was little change between the Pre-R and Pos-R periods in the midstream Heihe River Basin (MHRB). The average peak/intensity/duration/severity of hydrological drought (HD) decreased in the mainstream for Yingluoxia (Ylx) but increased for Zhengyixia (Zyx) station in the Pos-R period. Propagation time decreased by 3 months (negative effect) in Ylx and increased by 8 months (positive effect) in Zyx compared with the Pre-R period. In the Pos-R period, propagation time increased (1–3 months) for tributaries (positive effect). Propagation times for the mainstream and tributaries varied for different seasons and time periods. Pearson’s correlation coefficient values were lower at short timescales (1–3 months) but higher at long timescales for the Pos-R period in Ylx and Zyx for SDI-1 with different timescales of SPI. The SDI and SPI had no lag in the UHRB and MHRB. However, VCI with SPI had a significant lag correlation at short timescales in the UHRB (lag 6 months) and MHRB (lag 4 months), and the VCI with SDI had a significant lag correlation for 1 month in the MHRB. The propagation time from MD to HD has been reduced for Pos-R in the UHRB. There was a positive effect (prolonged MD propagation HD time) in Pos-R but still faces serious drought stress in the MHRB.


Sign in / Sign up

Export Citation Format

Share Document