The propagation dynamics and causes of hydrological drought in response to meteorological drought at seasonal timescale

Author(s):  
Lan Ma ◽  
Qiang Huang ◽  
Shengzhi Huang ◽  
Dengfeng Liu ◽  
Guoyong Leng ◽  
...  

<p>According to widely accepted definition of drought, meteorological and hydrological droughts originally develop from rainfalls and runoffs deficits, respectively. Runoffs deficit is mainly derived from rainfalls deficit. Therefore, hydrological drought is essentially propagated from meteorological drought, which is critical for agricultural water management. Investigation of the propagation from meteorological to hydrological drought is important for drought early warning, preparedness and mitigation. Nevertheless, the characteristics and dynamic of drought propagation in spatiotemporal scale remain unresolved. To this end, the characteristics and dynamic of drought propagation in different seasons and their linkages with key forcing factors are evaluated. In this study, the meteorological drought and hydrological drought are characterized by Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI), respectively. The propagation time is identified by the corresponding timescale of the maximum correlation coefficient between SPI and SRI. Then, a 20-year sliding window is adopted to explore the propagation dynamic in various seasons. Furthermore, the multiple linear regression model (MLR) is established to quantitatively explore the influence of meteorological factors, underlying surface features and teleconnection factors on the propagation time variations. The Wei River Basin (WRB), which is a typical Loess Plateau watershed in China, is selected as a case study. Results indicate that: (1) the propagation time from meteorological to hydrological drought is shorter in summer (2 months) and autumn (3 months), whilst that is longer in spring (8 months) and winter (13 months). Moreover, the propagation rates exhibit decreasing trend in warm seasons, which however show increasing trend in cold seasons; (2) a significant slowing propagation in autumn is mainly caused by the decreasing soil moisture and precipitation, while the non-significant tendency in summer is generally induced by the offset between insignificant increasing precipitation and significant decreasing soil moisture; (3) the replenishment from streamflow to groundwater in advance prompts the faster propagation from meteorological to hydrological drought in spring and winter; (4) teleconnection factors have strong influences on the propagation in autumn, in which Arctic Oscillation (AO), El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) mainly affect participation, arid index and soil moisture, thereby impacting drought propagation.</p>

2021 ◽  
Author(s):  
Lan Ma ◽  
Qiang Huang ◽  
Shengzhi Huang ◽  
Dengfeng Liu ◽  
Guoyong Leng ◽  
...  

Abstract According to the widely accepted definition of drought, meteorological and hydrological droughts originally develop from rainfall and runoff deficits, respectively. Runoff deficit is mainly derived from rainfall deficit, and the propagation from meteorological drought to hydrological drought is critical for agricultural water management. Nevertheless, the characteristics and dynamics of drought propagation in the spatiotemporal scale remain unresolved. To this end, the characteristics and dynamics of drought propagation in different seasons and their linkages with key forcing factors are evaluated. In this study, meteorological and hydrological droughts are characterized by the Standardized Precipitation Index (SPI) and the Standardized Runoff Index (SRI), respectively. Propagation time is identified by the corresponding timescale of the maximum correlation coefficient between the SPI and the SRI. Then, a 20-year sliding window is adopted to explore the propagation dynamic in various seasons. Furthermore, the multiple linear regression model is established to quantitatively explore the influence of meteorological factors, underlying surface features and teleconnection factors on the propagation time variations. The Wei River Basin, a typical Loess Plateau watershed in China, is selected as a case study. Results indicate the following: (1) the propagation time from meteorological to hydrological drought is shorter in summer (2 months) and autumn (3 months), whereas it is longer in spring (8 months) and winter (13 months). Moreover, the propagation rates exhibit a decreasing trend in warm seasons, which, however, show an increasing trend in cold seasons; (2) a significant slowing propagation in autumn is mainly caused by the decreasing soil moisture and precipitation, whereas the non-significant tendency in summer is generally induced by the offset between insignificant increasing precipitation and significant decreasing soil moisture; (3) the replenishment from streamflow to groundwater in advance prompts the faster propagation from meteorological to hydrological drought in spring and winter and (4) teleconnection factors have strong influences on the propagation in autumn, in which Arctic Oscillation, El Niño-Southern Oscillation and Pacific Decadal Oscillation mainly affect participation, arid index and soil moisture, thereby impacting drought propagation.


2018 ◽  
Vol 22 (9) ◽  
pp. 4649-4665 ◽  
Author(s):  
Anouk I. Gevaert ◽  
Ted I. E. Veldkamp ◽  
Philip J. Ward

Abstract. Drought is a natural hazard that occurs at many temporal and spatial scales and has severe environmental and socioeconomic impacts across the globe. The impacts of drought change as drought evolves from precipitation deficits to deficits in soil moisture or streamflow. Here, we quantified the time taken for drought to propagate from meteorological drought to soil moisture drought and from meteorological drought to hydrological drought. We did this by cross-correlating the Standardized Precipitation Index (SPI) against standardized indices (SIs) of soil moisture, runoff, and streamflow from an ensemble of global hydrological models (GHMs) forced by a consistent meteorological dataset. Drought propagation is strongly related to climate types, occurring at sub-seasonal timescales in tropical climates and at up to multi-annual timescales in continental and arid climates. Winter droughts are usually related to longer SPI accumulation periods than summer droughts, especially in continental and tropical savanna climates. The difference between the seasons is likely due to winter snow cover in the former and distinct wet and dry seasons in the latter. Model structure appears to play an important role in model variability, as drought propagation to soil moisture drought is slower in land surface models (LSMs) than in global hydrological models, but propagation to hydrological drought is faster in land surface models than in global hydrological models. The propagation time from SPI to hydrological drought in the models was evaluated against observed data at 127 in situ streamflow stations. On average, errors between observed and modeled drought propagation timescales are small and the model ensemble mean is preferred over the use of a single model. Nevertheless, there is ample opportunity for improvement as substantial differences in drought propagation are found at 10 % of the study sites. A better understanding and representation of drought propagation in models may help improve seasonal drought forecasting as well as constrain drought variability under future climate scenarios.


2018 ◽  
Author(s):  
Anouk I. Gevaert ◽  
Ted I. E. Veldkamp ◽  
Philip J. Ward

Abstract. Drought is a natural hazard that occurs at many temporal and spatial scales and has severe environmental and socio-economic impacts across the globe. The impacts of drought change as drought evolves from precipitation deficits to deficits in soil moisture or streamflow. Here, we quantified the time taken for drought to propagate from meteorological drought to soil moisture drought, and from meteorological drought to hydrological drought. We did this by cross-correlating the Standardized Precipitation Index (SPI) against standardized indices of soil moisture, runoff, and streamflow from an ensemble of global hydrological models forced by a consistent meteorological dataset. Drought propagation is strongly related to climate, occurring at sub-seasonal timescales in tropical climates and at up to multi-annual timescales in continental and arid climates. Winter droughts are usually related to longer SPI accumulation periods than summer droughts, especially in continental and tropical savanna climates. The difference between the seasons is likely due to winter snow cover in the former and distinct wet and dry seasons in the latter. Model structure appears to play an important role in model variability, as drought propagation to soil moisture drought is slower in land surface models than in global hydrological models, but propagation to hydrological drought is faster in land surface models than in global hydrological models. The propagation time from SPI to hydrological drought in the models was evaluated against observed data at 297 in-situ streamflow stations. On average, errors between observed and modeled drought propagation timescales are small and the model ensemble mean is preferred over the use of a single model. Nevertheless, there is ample opportunity for improvement as substantial differences in drought propagation are found at 20 % of the study sites. A better understanding and representation of drought propagation in models may help improve seasonal drought forecasting as well as constrain drought variability under future climate scenarios.


2020 ◽  
Vol 2020 ◽  
pp. 1-26
Author(s):  
Fanglei Zhong ◽  
Qingping Cheng ◽  
Ping Wang

Understanding the evolution and propagation of different drought types is crucial to reduce drought hazards in arid and semiarid regions. Here, Standardized Precipitation Index (SPI), Streamflow Drought Index (SDI), and Vegetation Condition Index (VCI) were used to investigate the spatiotemporal variation of different drought types and correlations between Pre (Pre-R)/post (Pos-R)-reservoir. Results showed that the average peak/intensity/duration/severity of meteorological droughts (MD) were greater in the Pre-R than in the Pos-R period in the upstream Heihe River Basin (UHRB), while there was little change between the Pre-R and Pos-R periods in the midstream Heihe River Basin (MHRB). The average peak/intensity/duration/severity of hydrological drought (HD) decreased in the mainstream for Yingluoxia (Ylx) but increased for Zhengyixia (Zyx) station in the Pos-R period. Propagation time decreased by 3 months (negative effect) in Ylx and increased by 8 months (positive effect) in Zyx compared with the Pre-R period. In the Pos-R period, propagation time increased (1–3 months) for tributaries (positive effect). Propagation times for the mainstream and tributaries varied for different seasons and time periods. Pearson’s correlation coefficient values were lower at short timescales (1–3 months) but higher at long timescales for the Pos-R period in Ylx and Zyx for SDI-1 with different timescales of SPI. The SDI and SPI had no lag in the UHRB and MHRB. However, VCI with SPI had a significant lag correlation at short timescales in the UHRB (lag 6 months) and MHRB (lag 4 months), and the VCI with SDI had a significant lag correlation for 1 month in the MHRB. The propagation time from MD to HD has been reduced for Pos-R in the UHRB. There was a positive effect (prolonged MD propagation HD time) in Pos-R but still faces serious drought stress in the MHRB.


Author(s):  
Ziyan Li ◽  
Shengzhi Huang ◽  
Shuai Zhou ◽  
Guoyong Leng ◽  
Dengfeng Liu ◽  
...  

AbstractAn understanding of the propagation process from meteorological to hydrological drought contributes to accurate prediction hydrological drought. However, the comprehensive influence of direct human activities involved in drought propagation is not well understood. In this study, an identification framework for drought propagation time was constructed to quantify the effects of direct human activities (i.e., reservoir storage, irrigation, industrial, domestic and agricultural water consumption) on drought propagation. Subsequently, the effects of meteorological and underlying surface factors on the drought propagation process were clarified based on random forest method, and the driving effect of teleconnection factors was investigated from top to bottom. The Wei River Basin (WRB), the largest tributary of the Yellow River Basin, was selected as the case study. Results disclosed that the propagation time from meteorological to hydrological drought was short in summer (approximately 2 months) and autumn (approximately 3 months), while long in spring (approximately 3–5 months) and winter (approximately 3–8 months), exhibiting noticeable spatial variability. In a changing environment, the propagation time generally showed a decreasing trend in spring and winter, while increasing propagation time was observed in summer and autumn. The dynamic drought propagation time of each season was all jointly controlled by the different extent variation of meteorological and underlying surface conditions, and the basic flow is all relatively significant throughout the period. Direct human activities had an effect on the seasonal dynamics of drought propagation, especially during the winter of the non-flood season, which alleviated the severity of winter hydrological drought to some extent, thus delaying the transmission of meteorological signals to hydrological systems. Sunspots, the dominant direct teleconnection driving force in the WRB, could indirectly affect the local precipitation and base flow in spring, autumn, and winter and interferes with the drought propagation process. This study sheds new insights into the attribution of drought propagation dynamics in a changing environment.


2020 ◽  
Author(s):  
Jingwen Wu ◽  
Chiyuan Miao

<p>Drought is the most recurrent and destructive hazard in arid and semi-arid regions, and will only become more complex under climate change. It is vital to characterize the various types of drought, to investigate the potential factors affecting different types of drought, and to assess the relationship between drought types. In this study, the Standardized Precipitation Index (SPI) and the Standardized Runoff Index (SRI) were used to characterize meteorological and hydrological drought, respectively, and used to investigate drought characteristics and mechanisms in 17 catchments on the Loess Plateau from 1961–2013. Furthermore, the propagation time from meteorological to hydrological drought was explored and the potential factors influencing drought propagation time were investigated. The results indicate that the Loess Plateau has experienced an increased tendency towards both meteorological and hydrological droughts over the period 1961−2013, with hydrological drought more serious than meteorological drought at various drought assessment time scales. Moreover, average drought duration and severity were greater for hydrological drought than meteorological drought. Maximum 5-day precipitation (Rx5day) was the dominant extreme climate index for explaining variance in meteorological drought at the annual time scale. Owing to the greater complexity underlying hydrological drought, Rx5day, the number of warm days (Tx90p), and the number of warm nights (Tn90p) all contribute to the variance in hydrological drought. Furthermore, the percentage of forested land had a significant positive association (p<0.001) with propagation time, whereas the percentage of land given over to pasture had a significant negative association (p<0.001) with propagation time.</p>


2015 ◽  
Vol 16 (3) ◽  
pp. 1397-1408 ◽  
Author(s):  
Hongshuo Wang ◽  
Jeffrey C. Rogers ◽  
Darla K. Munroe

Abstract Soil moisture shortages adversely affecting agriculture are significantly associated with meteorological drought. Because of limited soil moisture observations with which to monitor agricultural drought, characterizing soil moisture using drought indices is of great significance. The relationship between commonly used drought indices and soil moisture is examined here using Chinese surface weather data and calculated station-based drought indices. Outside of northeastern China, surface soil moisture is more affected by drought indices having shorter time scales while deep-layer soil moisture is more related on longer index time scales. Multiscalar drought indices work better than drought indices from two-layer bucket models. The standardized precipitation evapotranspiration index (SPEI) works similarly or better than the standardized precipitation index (SPI) in characterizing soil moisture at different soil layers. In most stations in China, the Z index has a higher correlation with soil moisture at 0–5 cm than the Palmer drought severity index (PDSI), which in turn has a higher correlation with soil moisture at 90–100-cm depth than the Z index. Soil bulk density and soil organic carbon density are the two main soil properties affecting the spatial variations of the soil moisture–drought indices relationship. The study may facilitate agriculture drought monitoring with commonly used drought indices calculated from weather station data.


2018 ◽  
Vol 66 (4) ◽  
pp. 393-403 ◽  
Author(s):  
Miriam Fendeková ◽  
Tobias Gauster ◽  
Lívia Labudová ◽  
Dana Vrablíková ◽  
Zuzana Danáčová ◽  
...  

Abstract Several quite severe droughts occurred in Europe in the 21st century; three of them (2003, 2012 and 2015) hit also Slovakia. The Standardized Precipitation Index (SPI) and Standardized Precipitation and Evapotranspiration Index (SPEI) were used for assessment of meteorological drought occurrence. The research was established on discharge time series representing twelve river basins in Slovakia within the period 1981–2015. Sequent Peak Algorithm method based on fixed threshold, three parametric Weibull and generalized extreme values distribution GEV, factor and multiple regression analyses were employed to evaluate occurrence and parameters of hydrological drought in 2003, 2011–2012 and 2015, and the relationship among the water balance components. Results showed that drought parameters in evaluated river basins of Slovakia differed in respective years, most of the basins suffered more by 2003 and 2012 drought than by the 2015 one. Water balance components analysis for the entire period 1931–2016 showed that because of continuously increasing air temperature and balance evapotranspiration there is a decrease of runoff in the Slovak territory.


2021 ◽  
Vol 13 (23) ◽  
pp. 4730
Author(s):  
Malak Henchiri ◽  
Tertsea Igbawua ◽  
Tehseen Javed ◽  
Yun Bai ◽  
Sha Zhang ◽  
...  

Droughts are one of the world’s most destructive natural disasters. In large regions of Africa, droughts can have strong environmental and socioeconomic impacts. Understanding the mechanism that drives drought and predicting its variability is important for enhancing early warning and disaster risk management. Taking North and West Africa as the study area, this study adopted multi-source data and various statistical analysis methods, such as the joint probability density function (JPDF), to study the meteorological drought and return years across a long term (1982–2018). The standardized precipitation index (SPI) was used to evaluate the large-scale spatiotemporal drought characteristics at 1–12-month timescales. The intensity, severity, and duration of drought in the study area were evaluated using SPI–12. At the same time, the JPDF was used to determine the return year and identify the intensity, duration, and severity of drought. The Mann-Kendall method was used to test the trend of SPI and annual precipitation at 1–12-month timescales. The pattern of drought occurrence and its correlation with climate factors were analyzed. The results showed that the drought magnitude (DM) of the study area was the highest in 2008–2010, 2000–2003, and 1984–1987, with the values of 5.361, 2.792, and 2.187, respectively, and the drought lasting for three years in each of the three periods. At the same time, the lowest DM was found in 1997–1998, 1993–1994, and 1991–1992, with DM values of 0.113, 0.658, and 0.727, respectively, with a duration of one year each time. It was confirmed that the probability of return to drought was higher when the duration of drought was shorter, with short droughts occurring more regularly, but not all severe droughts hit after longer time intervals. Beyond this, we discovered a direct connection between drought and the North Atlantic Oscillation Index (NAOI) over Morocco, Algeria, and the sub-Saharan countries, and some slight indications that drought is linked with the Southern Oscillation Index (SOI) over Guinea, Ghana, Sierra Leone, Mali, Cote d’Ivoire, Burkina Faso, Niger, and Nigeria.


Author(s):  
Lin Wang ◽  
Jianyun Zhang ◽  
Amgad Elmahdi ◽  
Zhangkang Shu ◽  
Yinghui Wu ◽  
...  

Abstract In the context of global warming and increasing human activities, the acceleration of the water cycle will increase the risk of basin drought. In this study, to analyze the spatial and temporal evolution characteristics of hydrological and meteorological droughts over the Hanjiang River Basin (HRB); the Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI) were selected and applied for the period 1961–2018. In addition, the cross-wavelet method was used to discuss the relationship between hydrological drought and meteorological droughts. The results and analysis indicated that: (1) the meteorological drought in the HRB showed a complex cyclical change trend of flood-drought-flood from 1961 to 2018. The basin drought began to intensify from 1990s and eased in 2010s. The characteristics of drought evolution in various regions are different based on scale. (2) During the past 58 years, the hydrological drought in the HRB has shown a significant trend of intensification, particularly in autumn season. Also, the hydrological droughts had occurred frequently since the 1990s, and there were also regional differences in the evolution characteristics of drought in various regions. (3) Reservoir operation reduces the frequency of extreme hydrological drought events. The effect of reducing the duration and intensity of hydrological drought events by releasing water from the reservoir is most obvious at Huangjiagang Station, which is the nearest to Danjiangkou Reservoir. (4) The hydrological drought and meteorological drought in the HRB have the strongest correlation on the yearly scale. After 1990, severe human activities and climate change are not only reduced the correlation between hydrological drought and meteorological drought in the middle and lower reaches of the basin, but also reduced the lag time between them. Among them, the hydrological drought in the upper reaches of the basin lags behind the meteorological drought by 1 month, and the hydrological drought in the middle and lower reaches of the basin has changed from 2 months before 1990 to 1 month lagging after 1990.


Sign in / Sign up

Export Citation Format

Share Document