scholarly journals Household-level drinking water quality, access, and management practices within an informal community: a case study at Rio das Pedras, Rio de Janeiro

2018 ◽  
Vol 9 (1) ◽  
pp. 80-89 ◽  
Author(s):  
Richard V. Remigio ◽  
Renata S. Rabello ◽  
Garazi Zulaika ◽  
Marilia S. Carvalho ◽  
Paulo R. G. Barrocas ◽  
...  

Abstract Inter-household patterns in drinking water access, consumption, perception, and quality among residents can vary in Rio das Pedras (RdP), a large favela in Rio de Janeiro, Brazil. While unreliable water quality can influence residents to diversify their drinking water supply, household drinking water management practices are not generally known for this community. Household surveys, and indoor tap, piped water before entering the home, filtered, or bottled dispenser water samples were collected. Respondents reported storing water (91%) and near-daily access to piped water (78%). A majority of households reported cleaning water storage tanks at least once every 6 months. Also, residents rely on bottled water and a considerable proportion supplemented their water supply with at-home filtered water. The quality and safety of these sources are not necessarily superior to indoor tap water, especially under conditions of appropriate water storage tank cleaning. Higher prevalence of total coliform detections was found in indoor tap, filtered, and bottled water. Household characteristics such as home ownership, residence type, and residence time exhibited a positive association with improved tank cleaning. Community health practitioners could evaluate practices in water storage, at-home filtration maintenance, and bottled water dispenser systems using household characteristics to promote protective actions.

1999 ◽  
Vol 4 (4) ◽  
pp. 565-581 ◽  
Author(s):  
BRUCE A. LARSON ◽  
EKATERINA D. GNEDENKO

Casual observation suggests that many households in Moscow boil water, settle water in pans for some periods (e.g., overnight) before consuming, filter water, and buy bottled water. To date, there has been little empirical analysis of such avoidance behavior. Based on a recently completed survey of 615 households in Moscow, this paper investigates the types and amounts of avoidance measures that are used by households in Moscow to adjust drinking water quality. Survey results show that this is clearly the case: over 88 per cent of the sample boil water regularly due to concerns about water quality; 23 per cent filter water regularly; over 30 per cent settle water regularly; and about 13 per cent buy bottled water regularly. On the other hand, residents are generally content with their cold water supply and quality of delivery. Based on a microeconomic model of household avoidance behavior, logit regression results show how avoidance decisions relate to income, opinions of water quality, and location in the city. It is expected that this analysis from Moscow can also be used as a guide for future studies in other cities in Russia to evaluate opinions of quality, avoidance measures, and citizens' willingness to support public infrastructure projects designed to improve water supply.


2020 ◽  
Vol 10 (2) ◽  
pp. 298-308
Author(s):  
Carlos I. Gonzalez ◽  
John Erickson ◽  
Karina A. Chavarría ◽  
Kara L. Nelson ◽  
Amador Goodridge

Abstract Safe water storage is critical to preserve water quality, especially when intermittent piped drinking water supply creates a need for household storage. This study characterized household storage practices and stored water quality in 94 households (N = 94) among four peri-urban neighborhoods in Arraiján, Panama with varying degrees of supply intermittency. We found that 18 (19.1%) households stored drinking water in unsafe containers. Forty-four (47%) samples of household stored drinking water had residual chlorine levels <0.2 mg/L. While 33 (35.1%) samples were positive for total coliform bacteria, only 23 (24.4%) had >10 most probable number (MPN)/100 mL total coliform bacteria. Eight (44%) samples were positive for Escherichia coli, whereas only one (1.3%) sample from the safe containers was positive. Twenty-nine (30.9%) samples had >500 MPN/mL heterotrophic plate count bacteria. These findings suggest that longer supply interruptions were associated with longer storage times and lower chlorine residual, which were associated with higher concentrations of indicator bacteria. This is one of the first studies in the Central-American region to show an association between the lack of turnover (replacement with fresh water) and greater contamination during household water storage. Thus, when drinking water supply is not completely continuous and household storage is required, decreasing the time between supply periods can facilitate safer water storage. Public awareness and education are also recommended to increase hygiene practices during water collection and storage.


2016 ◽  
Vol 14 (5) ◽  
pp. 851-863 ◽  
Author(s):  
Akosua Sarpong Boakye-Ansah ◽  
Giuliana Ferrero ◽  
Maria Rusca ◽  
Pieter van der Zaag

Over past decades strategies for improving access to drinking water in cities of the Global South have mainly focused on increasing coverage, while water quality has often been overlooked. This paper focuses on drinking water quality in the centralized water supply network of Lilongwe, the capital of Malawi. It shows how microbial contamination of drinking water is unequally distributed to consumers in low-income (unplanned areas) and higher-income neighbourhoods (planned areas). Microbial contamination and residual disinfectant concentration were measured in 170 water samples collected from in-house taps in high-income areas and from kiosks and water storage facilities in low-income areas between November 2014 and January 2015. Faecal contamination (Escherichia coli) was detected in 10% of the 40 samples collected from planned areas, in 59% of the 64 samples collected from kiosks in the unplanned areas and in 75% of the 32 samples of water stored at household level. Differences in water quality in planned and unplanned areas were found to be statistically significant at p < 0.05. Finally, the paper shows how the inequalities in microbial contamination of drinking water are produced by decisions both on the development of the water supply infrastructure and on how this is operated and maintained.


2018 ◽  
Vol 16 (5) ◽  
pp. 827-838 ◽  
Author(s):  
Jonas Germain Levêque ◽  
Robert Clyde Burns

Abstract West Virginia has had a history of water quality issues. In parallel, the world is facing a plastic pollution crisis. In order to better understand behavioral responses to perceived water quality, a survey was conducted at a major research university to ask participants about water quality perceptions and drinking water behaviors. A total of 4,188 students completed the survey during the Spring 2017 semester. Logistic regression analyses were used to predict behaviors. Results indicated that a third of the student population primarily used bottled water for drinking purposes at home, while 39% used a filter at home and 26% drank water directly from the tap. On campus, bottled water use was reported by 36% of the students, water fountain use represented 31%, and 29% of the students brought their own water with reusable cups/bottles. Health risk perceptions, organoleptic perceptions (i.e., taste, odor, color), and environmental concern were predictors of the different behaviors. Students originally from West Virginia had a higher propensity of using bottled water. We argue that bottled water consumption should be reduced in areas where water quality is not an issue. In this sense, there is a need for education among the student population in West Virginia.


2007 ◽  
Vol 5 (2) ◽  
pp. 307-313 ◽  
Author(s):  
Jay P. Graham ◽  
James VanDerslice

Many communities along the US-México border remain without infrastructure for water and sewage. Residents in these communities often collect and store their water in open 55-gallon drums. This study evaluated changes in drinking water quality resulting from an intervention that provided large closed water storage tanks (2,500-gallons) to individual homes lacking a piped water supply. After the intervention, many of the households did not change the source of their drinking water to the large storage tanks. Therefore, water quality results were first compared based on the source of the household's drinking water: store or vending machine, large tank, or collected from a public supply and transported by the household. Of the households that used the large storage tank as their drinking water supply, drinking water quality was generally of poorer quality. Fifty-four percent of samples collected prior to intervention had detectable levels of total coliforms, while 82% of samples were positive nine months after the intervention (p < 0.05). Exploratory analyses were also carried out to measure water quality at different points between collection by water delivery trucks and delivery to the household's large storage tank. Thirty percent of the samples taken immediately after water was delivered to the home had high total coliforms (>10 CFU/100 ml). Mean free chlorine levels dropped from 0.43 mg/l, where the trucks filled their tanks, to 0.20 mg/l inside the household's tank immediately after delivery. Results of this study have implications for interventions that focus on safe water treatment and storage in the home, and for guidelines regarding the level of free chlorine required in water delivered by water delivery trucks.


2018 ◽  
Vol 28 (4) ◽  
pp. 1259-1264
Author(s):  
Kiril Lisichkov ◽  
Katerina Atkovska ◽  
Neven Trajchevski ◽  
Orce Popovski ◽  
Nadica Todorovska

The presence of some chemical compounds at higher levels than maximum permissible concentrations (MPC) in the drinking water, suggests of water resources pollution. In this paper the following elements were analyzed: total arsenic, cadmium, lead, cooper and zinc. Twelve samples of water from the water supply system from the city of Skopje were examined during one year from three different springs. Also, ten samples of bottled water from three producers from the Macedonian market were tested.The determined average mass concentrations of total As, Cd(II), Pb(II), Cu(II) and Zn(II) in the analyzed water samples from the water supply system are 1.35 μg/l, 0.06 μg/l, 0.6 μg/l, 0.9 μg/l and 1,12 μg/l, respectively, and for the tested bottled water, the mean values ranges from 0.56 - 0.83 μg total As / l, 0.053 - 0.056 μg Cd(II)/l, 0.51 - 0.54 μg Pb(II)/l , 0.6 - 0.87 μg Cu(II)/l and 0.68 - 0.8 μg Zn(II)/l water.The following instrumental analytical methods and techniques were used for the analysis of the tested samples of drinking water: flame atomic absorption spectroscopy (AAS), atomic absorption spectroscopy with hydride cеll, electrothermal atomic absorption spectroscopy.The obtained results are shown in tables and graphic form. According to the obtained results a comparative analysis was carried out indicate that it is a water of good quality that can be used in different branches of the process industry.The obtained results in this paper do not exceed the values of the MPC of the Republic of Macedonia prescribed by the legal regulations for the drinking water, which confirm the health safety of the drinking water from the water supply system in the city of Skopje and the packed waters from the Macedonian market in relation to the tested elements.


Author(s):  
Yu.A. Novikova ◽  
I.O. Myasnikov ◽  
A.A. Kovshov ◽  
N.A. Tikhonova ◽  
N.S. Bashketova

Summary. Introduction: Drinking water is one of the most important environmental factors sustaining life and determining human health. The goal of the Russian Federal Clean Water Project is to improve drinking water quality through upgrading of water treatment and supply systems using advanced technologies, including those developed by the military-industrial complex. The most informative and reliable sources of information for assessing drinking water quality are the results of systematic laboratory testing obtained within the framework of socio-hygienic monitoring (SGM) and production control carried out by water supply organizations. The objective of our study was to formulate approaches to organizing quality monitoring programs for centralized cold water supply systems. Materials and methods: We reviewed programs and results of drinking water quality laboratory tests performed by Rospotrebnadzor bodies and institutions within the framework of SGM in 2017–2018. Results: We established that drinking water quality monitoring in the constituent entities of the Russian Federation differs significantly in the number of monitoring points (566 in the Krasnoyarsk Krai vs 10 in Sevastopol) and measured indicators, especially sanitary and chemical ones (53 inorganic and organic substances in the Kemerovo Region vs one indicator in the Amur Region). Discussion: For a more complete and objective assessment of drinking water quality in centralized cold water supply systems, monitoring points should be organized at all stages of water supply with account for the coverage of the maximum number of people supplied with water from a particular network. Thus, the number of points in the distribution network should depend, inter alia, on the size of population served. In urban settlements with up to 10,000 inhabitants, for example, at least 4 points should be organized while in the cities with more than 3,000,000 inhabitants at least 80 points are necessary. We developed minimum mandatory lists of indicators and approaches to selecting priority indices to be monitored at all stages of drinking water supply.


1991 ◽  
Vol 23 (1-3) ◽  
pp. 201-209 ◽  
Author(s):  
W. Kreisel

Water quality can affect human health in various ways: through breeding of vectors, presence of pathogenic protozoa, helminths, bacteria and viruses, or through inorganic and organic chemicals. While traditional concern has been with pathogens and gastro-intestinal diseases, chemical pollutants in drinking-water supplies have in many instances reached proportions which affect human health, especially in cases of chronic exposure. Treatment of drinking-water, often grossly inadequate in developing countries, is the last barrier of health protection, but control at source is more effective for pollution control. Several WHO programmes of the International Drinking-Water Supply and Sanitation Decade have stimulated awareness of the importance of water quality in public water supplies. Three main streams have been followed during the eighties: guidelines for drinking-water quality, guidelines for wastewater reuse and the monitoring of freshwater quality. Following massive investments in the community water supply sector to provide people with adequate quantities of drinking-water, it becomes more and more important to also guarantee minimum quality standards. This has been recognized by many water and health authorities in developing countries and, as a result, WHO cooperates with many of them in establishing water quality laboratories and pollution control programmes.


2005 ◽  
Vol 5 (2) ◽  
pp. 123-134 ◽  
Author(s):  
R. Miller ◽  
B. Whitehill ◽  
D. Deere

This paper comments on the strengths and weaknesses of different methodologies for risk assessment, appropriate for utilisation by Australian Water Utilities in risk assessment for drinking water source protection areas. It is intended that a suggested methodology be recommended as a national approach to catchment risk assessment. Catchment risk management is a process for setting priorities for protecting drinking water quality in source water areas. It is structured through a series of steps for identifying water quality hazards, assessing the threat posed, and prioritizing actions to address the threat. Water management organisations around Australia are at various stages of developing programs for catchment risk management. While much conceptual work has been done on the individual components of catchment risk management, work on these components has not previously been combined to form a management tool for source water protection. A key driver for this project has been the requirements of the National Health and Medical Research Council Framework for the Management of Drinking Water Quality (DWQMF) included in the draft 2002 Australian Drinking Water Guidelines (ADWG). The Framework outlines a quality management system of steps for the Australian water industry to follow with checks and balances to ensure water quality is protected from catchment to tap. Key steps in the Framework that relate to this project are as follows: Element 2 Assessment of the Drinking Water Supply System• Water Supply System analysis• Review of Water Quality Data• Hazard Identification and Risk Assessment Element 3 Preventive Measures for Drinking Water Quality Management• Preventive Measures and Multiple Barriers• Critical Control Points This paper provides an evaluation of the following risk assessment techniques: Hazard Analysis and Critical Control Points (HACCP); World Health Organisation Water Safety Plans; Australian Standard AS 4360; and The Australian Drinking Water Guidelines – Drinking Water Quality Management Framework. These methods were selected for assessment in this report as they provided coverage of the different approaches being used across Australia by water utilities of varying: scale of water management organisation; types of water supply system management; and land use and activity-based risks in the catchment area of the source. Initially, different risk assessment methodologies were identified and reviewed. Then examples of applications of those methods were assessed, based on several key water utilities across Australia and overseas. Strengths and weaknesses of each approach were identified. In general there seems some general grouping of types of approaches into those that: cover the full catchment-to-tap drinking water system; cover just the catchment area of the source and do not recognise downstream barriers or processes; use water quality data or land use risks as a key driving component; and are based primarily on the hazard whilst others are based on a hazardous event. It is considered that an initial process of screening water quality data is very valuable in determining key water quality issues and guiding the risk assessment, and to the overall understanding of the catchment and water source area, allowing consistency with the intentions behind the ADWG DWQM Framework. As such, it is suggested that the recommended national risk assessment approach has two key introductory steps: initial screening of key issues via water quality data, and land use or activity scenario and event-based HACCP-style risk assessment. In addition, the importance of recognising the roles that uncertainty and bias plays in risk assessments was highlighted. As such it was deemed necessary to develop and integrate uncertainty guidelines for information used in the risk assessment process. A hybrid risk assessment methodology was developed, based on the HACCP approach, but with some key additions and modifications to make it applicable to varying catchment risks, water supply operation needs and environmental management processes.


Sign in / Sign up

Export Citation Format

Share Document