scholarly journals Faecal contamination of drinking water during collection and household storage: the need to extend protection to the point of use

2003 ◽  
Vol 1 (3) ◽  
pp. 109-115 ◽  
Author(s):  
Thomas F. Clasen ◽  
Andrew Bastable

Paired water samples were collected and analysed for thermotolerant coliforms (TTC) from 20 sources (17 developed or rehabilitated by Oxfam and 3 others) and from the stored household water supplies of 100 households (5 from each source) in 13 towns and villages in the Kailahun District of Sierra Leone. In addition, the female head of the 85 households drawing water from Oxfam improved sources was interviewed and information recorded on demographics, hygiene instruction and practices, sanitation facilities and water collection and storage practices. At the non-improved sources, the arithmetic mean TTC load was 407/100 ml at the point of distribution, rising to a mean count of 882/100 ml at the household level. Water from the improved sources met WHO guidelines, with no faecal contamination. At the household level, however, even this safe water was subject to frequent and extensive faecal contamination; 92.9% of stored household samples contained some level of TTC, 76.5% contained more than the 10 TTC per 100 ml threshold set by the Sphere Project for emergency conditions. The arithmetic mean TTC count for all samples from the sampled households was 244 TTC per 100 ml (geometric mean was 77). These results are consistent with other studies that demonstrate substantial levels of faecal contamination of even safe water during collection, storage and access in the home. They point to the need to extend drinking water quality beyond the point of distribution to the point of consumption. The options for such extended protection, including improved collection and storage methods and household-based water treatment, are discussed.

2006 ◽  
Vol 1 (2) ◽  
Author(s):  
Stephen W. Gundry ◽  
James A. Wright ◽  
Ronan Conroy ◽  
Martella Du Preez ◽  
Bettina Genthe ◽  
...  

Aims: To assess contamination of drinking water in rural Zimbabwe and South Africa Methods: We conducted a cohort study of 254 children aged 12-24 months in rural South Africa and Zimbabwe. In dry and wet seasons, we measured water quality, using the indicator organism E. coli, at improved and unimproved sources, in household storage and drinking cups. We also recorded hygiene and socio-economic factors for each household. Results: For improved sources, samples with E. coli counts less than 10 cfu/100ml were as follows: at source: 165 (88%); in household storage 137 (59%); in drinking cups 91 (49%). The corresponding values for unimproved sources were: source 47 (29%); household storage 32 (19%); drinking cups 21 (18%). This significant deterioration in microbial quality of water from improved sources was seen in both countries and both survey rounds. Conclusion: Although improved sources generally delivered ‘safe’ water at the point-of-supply, 12% of source samples were contaminated and as such were ‘unsafe’. Furthermore, in household storage, more than 40% of samples were ‘unsafe’. For monitoring the Millennium Development Goal for water, UNICEF-WHO are assuming an equivalence between ‘improved’ sources and ‘safe’ water. Our findings suggest that this equivalence may be unsound.


2016 ◽  
Vol 14 (5) ◽  
pp. 851-863 ◽  
Author(s):  
Akosua Sarpong Boakye-Ansah ◽  
Giuliana Ferrero ◽  
Maria Rusca ◽  
Pieter van der Zaag

Over past decades strategies for improving access to drinking water in cities of the Global South have mainly focused on increasing coverage, while water quality has often been overlooked. This paper focuses on drinking water quality in the centralized water supply network of Lilongwe, the capital of Malawi. It shows how microbial contamination of drinking water is unequally distributed to consumers in low-income (unplanned areas) and higher-income neighbourhoods (planned areas). Microbial contamination and residual disinfectant concentration were measured in 170 water samples collected from in-house taps in high-income areas and from kiosks and water storage facilities in low-income areas between November 2014 and January 2015. Faecal contamination (Escherichia coli) was detected in 10% of the 40 samples collected from planned areas, in 59% of the 64 samples collected from kiosks in the unplanned areas and in 75% of the 32 samples of water stored at household level. Differences in water quality in planned and unplanned areas were found to be statistically significant at p < 0.05. Finally, the paper shows how the inequalities in microbial contamination of drinking water are produced by decisions both on the development of the water supply infrastructure and on how this is operated and maintained.


2014 ◽  
Vol 4 (4) ◽  
pp. 672-680 ◽  
Author(s):  
Paula Stigler-Granados ◽  
Penelope J. E. Quintana ◽  
Richard Gersberg ◽  
María Luisa Zúñiga ◽  
Thomas Novotny

One of the United Nations Millennium Development Goals is to reduce the global proportion of people who do not have access to safe drinking water. In the past, the typical strategy to reach this goal has been the use of investment-intensive centralized infrastructure development for water supplies. However, there is increasing evidence suggesting that improving water quality at the source does not guarantee safe water at point-of-use. This study examined water quality, waterborne disease incidence and water system use over time in two small rural indigenous communities of Baja California, Mexico, before and after drinking-water infrastructure improvements. Community Promotoras collected data on the incidence of gastrointestinal illness through face-to-face surveys. Concurrently, water samples from the old and new water sources and household water storage containers were analyzed for fecal coliforms. Although source water quality was significantly improved in both communities (p < 0.05), neither community had a significant decrease in the level of contaminated drinking water sampled at the household level. No significant decrease in gastrointestinal illness was found after the improvements to the source water supply. These results indicate that point-of-use contamination and acceptance of the new sources may be a critical point for intervention when attempting to assure access to safe water, especially in rural communities.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245910
Author(s):  
Saskia Nowicki ◽  
Zaydah R. deLaurent ◽  
Etienne P. de Villiers ◽  
George Githinji ◽  
Katrina J. Charles

Across the water sector, Escherichia coli is the preferred microbial water quality indicator and current guidance upholds that it indicates recent faecal contamination. This has been challenged, however, by research demonstrating growth of E. coli in the environment. In this study, we used whole genome sequencing to investigate the links between E. coli and recent faecal contamination in drinking water. We sequenced 103 E. coli isolates sampled from 9 water supplies in rural Kitui County, Kenya, including points of collection (n = 14) and use (n = 30). Biomarkers for definitive source tracking remain elusive, so we analysed the phylogenetic grouping, multi-locus sequence types (MLSTs), allelic diversity, and virulence and antimicrobial resistance (AMR) genes of the isolates for insight into their likely source. Phylogroup B1, which is generally better adapted to water environments, is dominant in our samples (n = 69) and allelic diversity differences (z = 2.12, p = 0.03) suggest that naturalised populations may be particularly relevant at collection points with lower E. coli concentrations (<50 / 100mL). The strains that are more likely to have originated from human and/or recent faecal contamination (n = 50), were found at poorly protected collection points (4 sites) or at points of use (12 sites). We discuss the difficulty of interpreting health risk from E. coli grab samples, especially at household level, and our findings support the use of E. coli risk categories and encourage monitoring that accounts for sanitary conditions and temporal variability.


2011 ◽  
Vol 9 (4) ◽  
pp. 628-636 ◽  
Author(s):  
W. Onyango-Ouma ◽  
Charles P. Gerba

A cross-sectional descriptive study was conducted to examine away-from-home drinking water consumption practices and the microbiological quality of water consumed in rural western Kenya. The study involved adults and schoolchildren. Data were collected using focus group discussions, questionnaire survey, observations, diaries and interviews. The findings suggest that away-from-home drinking water consumption is a common practice in the study area; however, the microbiological quality of the water consumed is poor. While some respondents perceive the water to be safe for drinking mainly because of the clear colour of the water, others are forced by circumstances to drink the water as it is owing to a lack of alternative safe sources. It is concluded that there is a need for new innovative approaches to address away-from-home drinking water consumption in resource-poor settings in order to complement and maximize the benefits of point-of-use water treatment at the household level.


Author(s):  
Resoketswe Charlotte Moropeng ◽  
Phumudzo Budeli ◽  
Maggy Ndombo Benteke Momba

This study assessed the impact of sanitation practices, hygienic and storage conditions on the quality of drinking water treated at point-of-use in Makwane Village. Subsequent to implementation of low-cost Household Water Treatment Devices which are the biosand filter with zeolite-silver (BSZ-SICG) and silver-impregnated porous pot (SIPP) filters in Makwane village, a structured questionnaire was designed to collect the following information: age of caretakers, number of children under the age of five, water storage conditions, sanitation amenities, and hygiene practices. Water quality from the sources to household level was assessed using culture-based and molecular techniques. The results revealed a significant association between the presence of Escherichia coli in treated drinking water with the age group of caregivers and the number of children ofless than the age of five [OR (95% CI) = 8.4737 (0.147–3.3497), p = 0.0141923 and OR (95% CI) = 9.1667 (0.1848–3.0159); p = 0.0165830, respectively]. Moreover, significant association was noted between hygiene practices (washing of hands with/without soap) and water quality in storage containers [OR (95% CI) = 16.000 (0.6763–3.9495), p = 0.0000125]. These findings further prove that there is still a dire need for reconsidering hygiene education in rural areas as the health benefits of water treated at point of use (POU) coupled with safe-storage condition interventions might not be guaranteed without proper hygiene. The results further highlighted the importance of washing hands in improving microbial quality of drinking water, which is the key factor for fighting against infectious diseases.


2009 ◽  
Vol 7 (2) ◽  
pp. 324-331 ◽  
Author(s):  
Curtis C. Copeland ◽  
Benjamin B. Beers ◽  
Meghan R. Thompson ◽  
Relana P. Fitzgerald ◽  
Leah J. Barrett ◽  
...  

Worldwide, contaminated drinking water poses a major health threat, particularly to child development. Diarrhoea represents a large part of the water-related disease burden and enteric infections have been linked to nutritional and growth shortfalls as well as long-term physical and cognitive impairment in children. Previous studies detailed the frequency of infection and the consequences for child health in a shanty town in north-east Brazil. To determine the frequency of contaminated water, we measured faecal contamination in primary drinking water samples from 231 randomly selected households. Risk for contamination was compared across source and storage types. Nearly a third of the study households (70/231: 30.3%) had contaminated drinking water; the source with the highest frequency of contamination was well water (23/24: 95.8%). For tap water, the type of storage had a significant effect on the susceptibility to contamination (χ2=12.090; p=0.007). The observed pattern of contamination demonstrated the relative potential contributions of both source and storage. With evidence that supports the inclusion of source and storage in water quality surveys, this study, like others, suggests that contaminated drinking water in storage vessels may be an important factor for the documented diarrhoea disease burden in the Brazilian shanty town.


2010 ◽  
Vol 8 (4) ◽  
pp. 611-630 ◽  
Author(s):  
Heather M. Murphy ◽  
Edward A. McBean ◽  
Khosrow Farahbakhsh

Point-of-use (POU) technologies have been proposed as solutions for meeting the Millennium Development Goal (MDG) for safe water. They reduce the risk of contamination between the water source and the home, by providing treatment at the household level. This study examined two POU technologies commonly used around the world: BioSand and ceramic filters. While the health benefits in terms of diarrhoeal disease reduction have been fairly well documented for both technologies, little research has focused on the ability of these technologies to treat other contaminants that pose health concerns, including the potential for formation of contaminants as a result of POU treatment. These technologies have not been rigorously tested to see if they meet World Health Organization (WHO) drinking water guidelines. A study was developed to evaluate POU BioSand and ceramic filters in terms of microbiological and chemical quality of the treated water. The following parameters were monitored on filters in rural Cambodia over a six-month period: iron, manganese, fluoride, nitrate, nitrite and Escherichia coli. The results revealed that these technologies are not capable of consistently meeting all of the WHO drinking water guidelines for these parameters.


Sign in / Sign up

Export Citation Format

Share Document