scholarly journals The application of computational fluid dynamics and small-scale physical models to assess the effects of operational practices on the risk to public health within large indoor swimming pools

2015 ◽  
Vol 13 (4) ◽  
pp. 939-952 ◽  
Author(s):  
Lowell Lewis ◽  
John Chew ◽  
Iain Woodley ◽  
Jeni Colbourne ◽  
Katherine Pond

Swimming pools provide an excellent facility for exercise and leisure but are also prone to contamination from microbial pathogens. The study modelled a 50-m × 20-m swimming pool using both a small-scale physical model and computational fluid dynamics to investigate how water and pathogens move around a pool in order to identify potential risk spots. Our study revealed a number of lessons for pool operators, designers and policy-makers: disinfection reaches the majority of a full-scale pool in approximately 16 minutes operating at the maximum permissible inlet velocity of 0.5 m/s. This suggests that where a pool is designed to have 15 paired inlets it is capable of distributing disinfectant throughout the water body within an acceptable time frame. However, the study also showed that the exchange rate of water is not uniform across the pool tank and that there is potential for areas of the pool tank to retain contaminated water for significant periods of time. ‘Dead spots’ exist at either end of the pool where pathogens could remain. This is particularly significant if there is a faecal release into the pool by bathers infected with Cryptosporidium parvum, increasing the potential for waterborne disease transmission.

Author(s):  
Alessandro Bianchini ◽  
Francesco Balduzzi ◽  
Giovanni Ferrara ◽  
Lorenzo Ferrari ◽  
Giacomo Persico ◽  
...  

Darrieus vertical axis wind turbines (VAWTs) have been recently identified as the most promising solution for new types of applications, such as small-scale installations in complex terrains or offshore large floating platforms. To improve their efficiencies further and make them competitive with those of conventional horizontal axis wind turbines, a more in depth understanding of the physical phenomena that govern the aerodynamics past a rotating Darrieus turbine is needed. Within this context, computational fluid dynamics (CFD) can play a fundamental role, since it represents the only model able to provide a detailed and comprehensive representation of the flow. Due to the complexity of similar simulations, however, the possibility of having reliable and detailed experimental data to be used as validation test cases is pivotal to tune the numerical tools. In this study, a two-dimensional (2D) unsteady Reynolds-averaged Navier–Stokes (U-RANS) computational model was applied to analyze the wake characteristics on the midplane of a small-size H-shaped Darrieus VAWT. The turbine was tested in a large-scale, open-jet wind tunnel, including both performance and wake measurements. Thanks to the availability of such a unique set of experimental data, systematic comparisons between simulations and experiments were carried out for analyzing the structure of the wake and correlating the main macrostructures of the flow to the local aerodynamic features of the airfoils in cycloidal motion. In general, good agreement on the turbine performance estimation was constantly appreciated.


Author(s):  
Ke Ren ◽  
Alexei Kotchourko ◽  
Alexander Lelyakin

Deflagration to detonation transition (DDT) is a challenging subject in computational fluid dynamics both from a standpoint of the phenomenon nature understanding and from extremely demanding computational efforts. In recent years, as the development of computer technology and improvement of numerical schemes was achieved, some more direct methods have been found to reproduce the DDT mechanistically without additional numerical or physical models. In the current work, highly resolved DDT simulations of hydrogen-air and of hydrogen-oxygen mixtures in 2D channel with regular repeating obstacles are present. The technique of local mesh refinement (ALMR) is implemented in the simulations to minimize the computational efforts. The criteria for the ALMR are examined and optimized in simulations.


2018 ◽  
Vol 16 (5) ◽  
pp. 750-761 ◽  
Author(s):  
J. Zhang ◽  
N. Sinha ◽  
M. Ross ◽  
A. E. Tejada-Martínez

Abstract Hydraulic or filtration efficiency of residential swimming pools, quantified in terms of residence time characteristics, is critical to disinfection and thus important to public health. In this study, a three-dimensional computational fluid dynamics model together with Eulerian and Lagrangian-based techniques are used for investigating the residence time characteristics of a passive tracer and particles in the water, representative of chemicals and pathogens, respectively. The flow pattern in the pool is found to be characterized by dead zone regions where water constituents may be retained for extended periods of times, thereby potentially decreasing the pool hydraulic efficiency. Two return-jet configurations are studied in order to understand the effect of return-jet location and intensity on the hydraulic efficiency of the pool. A two-jet configuration is found to perform on par with a three-jet configuration in removing dissolved constituents but the former is more efficient than the latter in removing or flushing particles. The latter result suggests that return-jet location and associated flow circulation pattern have an important impact on hydraulic efficiency. Thus return-jet configuration should be incorporated as a key parameter in the design of swimming pools complementing current design standards.


Author(s):  
Han Li ◽  
Huhu Wang ◽  
Yassin A. Hassan ◽  
N. K. Anand

Two or multiple parallel jets are an important shear flow that widely existing in many industrial applications. The interaction between turbulence jets enables fast and thorough mixing of two fluids. The mixing feature of parallel jets has many engineering applications, such as, in Generation IV conceptual nuclear reactors, the coolants merge in upper or lower plenum after passing through the reactor core. While study of parallel jets mixing phenomenon, numerical experiments such as Computational Fluid Dynamics (CFD) simulations are extensively incorporated. Validation of varied turbulent models is of importance to make sure that the numerical results could be trusted and served as a guideline further design purpose. Many commercial CFD packages in the market such as FLUENT and Star CCM+ can provide the ability to simulate turbulent flow with predefined turbulence model, however, such commercial solvers may lack the flexibility that allow users build their own models for R&D purpose. The existing solvers in OpenFOAM are developed to fulfill both academic and industrial needs by achieving large-scale computational capability with a variety of physical models. Moreover, as an open source CFD toolbox, OpenFOAM grants users full control of the source code with complete freedom of customization. The purpose of this study is to perform CFD simulation using OpenFOAM for two submerged parallel jets issuing from two rectangular channels. Fully hexahedron multi-density mesh is generated using blockMesh utility to ensure velocity gradients are properly evaluated. A generalized-multi-grid solver is used to enhance convergence. Based on Reynolds-Averaged Navier-Stokes Equations (RANS), the realizable k-ε and k-ε shear stress transport (SST) are selected to model turbulent flow. Steady state Finite Volume solver simpleFoam is used to perform the simulation. In addition, data from experiments run in Thermal-Hydraulic Lab at Texas A&M University using particle image velocity (PIV) and Laser Doppler Anemometry (LDA) methods are considered in order to compare and validate simulation results. A number of turbulence characteristic such as mean velocities, turbulent intensities, z-component vorticity were compared with experiments. It was found that for stream-wise mean velocity profile as well as shear stresses, the realizable k-ε model exhibits a good agreement with experimental data. However, velocity fluctuation and turbulence intensities, simulation results showed a certain discrepancy.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1870
Author(s):  
Jorge Badules ◽  
Mariano Vidal ◽  
Antonio Boné ◽  
Emilio Gil ◽  
F. Javier García-Ramos

Agitation inside agricultural sprayer tanks can be studied while using an international standard procedure, based on obtaining internal samples of liquid. However, in practice, this test is not easy to perform. Herein, we propose the explicit study of the mixing procedure with biphasic computer simulations using Computational Fluid Dynamics (CFD). An experimental test was performed on a 3000 L tank of a commercial air-assisted sprayer, with two different agitation system configurations, in order to compare the results of several theoretical physical models of biphasic flows for CFD, both Eulerian and Lagrangian. From the analysis of these theoretical models, we conclude that the Volume of Fluid model is not viable and the Discrete Phase Model produces erroneous results, while the Eulerian and Mixture models can both be useful. However, the results obtained suggest that complex streams generated by real-world agitation systems produce more errors in calculations. Both models can be conducted in the design phase, prior to the implementation of the machine. In addition, the computer simulations allow for researchers to analyse the mixing process in detail, making it possible to evaluate the efficiency of an agitation system according to the time that is required to reach mixture homogeneity.


2020 ◽  
pp. 0309524X2092495
Author(s):  
Federico González Madina ◽  
Alejandro Gutiérrez ◽  
Pedro Galione

In this work, two-dimensional models of Savonius rotors are simulated using OpenFOAM® in order to predict the aerodynamic performance of small-scale vertical-axis wind turbines. The results are reported analyzing the aerodynamic performance and forces acting on the rotors. Power coefficient, [Formula: see text], is compared with experimental data for each operation point, and for three different geometries. Simulations with first- and second-order discretization schemes are carried out and compared, both quantitative and qualitative. Since usual grid dimensions result not to be suitable for simulations of Savonius rotors, an analysis of different domains is performed and compared. Finally, a set up for computational fluid dynamics simulation of two-dimensional Savonius rotors is proposed. The fluid–rotor interaction is analyzed and the vortex shedding is correlated with [Formula: see text] values and wake description.


Author(s):  
Hamid R Hazby ◽  
Liping Xu ◽  
Michael V Casey

This paper presents an experimental and numerical study of the flow in a 1:1 scale, automotive turbocharger centrifugal compressor. Particle image velocimetry measurements have been carried out in the vaneless diffuser at 50% of the design speed. The challenges involved in taking optical measurements in the current small-scale compressor rig are discussed. The overall stage performance and the measured diffuser flow are compared with the results of steady-state computational fluid dynamics calculations. A good agreement between the computational fluid dynamics and the experimental results demonstrates that the numerical methods are capable of predicting the main flow features within the compressor. The synthesis of measured and predicted data is used to explain the sources of the flow and performance variations across the compressor map, and the differences in loss production between small and large compressors are highlighted.


Sign in / Sign up

Export Citation Format

Share Document