Agricultural water poverty in Marvdasht County, Southern Iran

Water Policy ◽  
2013 ◽  
Vol 15 (5) ◽  
pp. 669-690 ◽  
Author(s):  
Masoumeh Forouzani ◽  
Ezatollah Karami ◽  
Gh. Hossein Zamani

The paper discusses the application of the Agricultural Water Poverty Index (AWPI) as an assessment tool for agricultural water in rural areas of Marvdasht County, Fars Province, Iran. Along with the global concern, water has become an increasing concern during the recent years in Iran. This paper provides an overview of the AWPI and the methodology to measure AWP by addressing the four key issues, namely practical components and indicators, sources of data, choice of formula, and choice of base period. In order to assess water scarcity at the local level, a survey was conducted using stratified random sampling to select 293 farmers working in different climates. Distinct differences were found between farmers living in different climates with regard to the AWPI score. The study revealed that all farmers were labeled as ‘agricultural water poor’. Farmers with a high score on the AWPI were characterized by having more water resources, more access to water resources, better use of available water, better abilities to manage water use and low environmental factors affecting the AWP than other farmers. Finally the study identified the hot spots, most needy places, and the reasons behind the agricultural water poverty by drawing the AWP map using a Geographic Information System (GIS).

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1432 ◽  
Author(s):  
Ahmed F. Mashaly ◽  
Alexander G. Fernald

Agriculture is the most important sector with regard to water resources management due to its social, economic, hydrological, and environmental aspects, and many scholars and researchers have been driven to investigate the dynamic interrelationships among hydrological, environmental, and socioeconomic factors affecting agriculture. The system dynamics (SD) approach has become widely used because of its merits and benefits as a tool to deal with complex, dynamic problems and systems with many aspects and components that are involved and must be understood to ensure sound decisions regarding water and hydrological systems. Although agricultural water management needs to be studied as a main part of water management, socioeconomic management, and environmental management requiring the use of SD, this review shows that SD is currently used to a limited extent in terms of agricultural water management. This paper sheds light on the studies and investigations on the use of SD in the water sector and highlights the strengths of SD in order to encourage researchers to use this promising method to manage such a vital resource. Accordingly, this review seeks to include a comprehensive and up-to-date survey of existing publications and scholarly papers on the use of SD modeling as an effective technique for dealing with different problems associated with planning, management, and analysis of hydrology and water resources systems. Recent trends in the integration of SD with other modeling systems, such as artificial intelligence systems, are discussed along with the limitations and challenges facing application. This article makes a new contribution by giving a foundation of references and studies for scholars, researchers, and academics which encourages future investigation in employing the SD approach to hydrology and water resources management and planning, especially with agricultural water.


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 16
Author(s):  
Wahidullah Hussainzada ◽  
Han Soo Lee

To address the issues of water shortages and the loss of agricultural products at harvest in northern Afghanistan, the Soil and Water Assessment Tool (SWAT) was applied for agricultural water resource management by simulating surface runoff in the Balkhab River basin (BRB) on a monthly basis from 2013 to 2018. Elevation, slope, land cover data, soil maps, and climate data such as temperature, precipitation, relative humidity, wind speed, and solar radiation were used as inputs in the SWAT modelling. During the dry season from July to September, the water resources downstream were basically attributed to baseflow from groundwater. In the calibration, the groundwater baseflow was estimated by analyzing station-recorded discharges for 190 springs. With the estimated baseflow, the SWAT results were markedly improved, with R2 values of 0.70, 0.86, 0.67, and 0.80, Nash-Sutcliff efficiency (NSE) values of 0.52, 0.83, 0.40, and 0.57, and percent bias (PBIAS) values of 23.4, −8.5, 23.4, and 17.5 in the four different subbasins. In the validation, the statistics also indicated satisfactory results. The output of this study can be used in agricultural water resource management with irrigation practices and further in the assessment of climate change effects on the water resources in the BRB.


Author(s):  
Kalaichelvi Sivaraman ◽  
Rengasamy Stalin

This research paper is the part of Research Project entitled “Impact of Elected Women Representatives in the Life and Livelihood of the Women in Rural Areas: With Special Reference to Tiruvannamalai District, Tamil Nadu” funded by University of Madras under UGC-UPE Scheme.The 73rd and 74th amendments of the Constitution of India were made by the government to strengthen the position of women and to create a local-level legal foundation for direct democracy for women in both rural and urban areas. The representation for women in local bodies through reservation policies amendment in Constitution of India has stimulated the political participation of women in rural areas. However, when it’s comes to the argument of whether the women reservation in Panchayati Raj helps or benefits to the life and livelihood development of women as a group? The answer is hypothetical because the studies related to the impact of women representatives of Panchayati Raj in the life and livelihood development of women was very less. Therefore, to fill the gap in existing literature, the present study was conducted among the rural women of Tiruvannamalai district to assess the impact of elected women representatives in the physical and financial and business development of the women in rural areas. The findings revealed that during the last five years because of the women representation in their village Panjayati Raj, the Physical Asset of the rural women were increased or developed moderately (55.8%) and Highly (23.4%) and the Financial and Business Asset of the rural women were increased or developed moderately (60.4%) and Highly (18.7%).


2013 ◽  
Vol 409-410 ◽  
pp. 79-82 ◽  
Author(s):  
Ying Qin Chen ◽  
Xian Feng Huang

Due to the rich resources of urban rainwater and transit flood in coastal areas, rational utilization of rainfall and flood water resources can improve the sustainable utilization, to better serve the coastal development. In this paper, the available quantity of water rainfall and flood water resources in coastal are distributed to domestic water, industrial water, agricultural water and ecologic environmental water. Water price method is used to calculate domestic water efficiency. Energy synthesis is used to calculate the industrial and agricultural water-use efficiency. Ecologic environmental water-use efficiency-sharing coefficient method is used to calculate the ecologic environmental water-use efficiency. Finally, taking Lianyungang City, a Jiangsu coastal city as an example to analyze the rainfall and flood water resources utilization efficiency. The results provide reference to the research for Chinas plain area rainfall and flood water resources efficiency analysis.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1313
Author(s):  
George Akoko ◽  
Tu Hoang Le ◽  
Takashi Gomi ◽  
Tasuku Kato

The soil and water assessment tool (SWAT) is a well-known hydrological modeling tool that has been applied in various hydrologic and environmental simulations. A total of 206 studies over a 15-year period (2005–2019) were identified from various peer-reviewed scientific journals listed on the SWAT website database, which is supported by the Centre for Agricultural and Rural Development (CARD). These studies were categorized into five areas, namely applications considering: water resources and streamflow, erosion and sedimentation, land-use management and agricultural-related contexts, climate-change contexts, and model parameterization and dataset inputs. Water resources studies were applied to understand hydrological processes and responses in various river basins. Land-use and agriculture-related context studies mainly analyzed impacts and mitigation measures on the environment and provided insights into better environmental management. Erosion and sedimentation studies using the SWAT model were done to quantify sediment yield and evaluate soil conservation measures. Climate-change context studies mainly demonstrated streamflow sensitivity to weather changes. The model parameterization studies highlighted parameter selection in streamflow analysis, model improvements, and basin scale calibrations. Dataset inputs mainly compared simulations with rain-gauge and global rainfall data sources. The challenges and advantages of the SWAT model’s applications, which range from data availability and prediction uncertainties to the model’s capability in various applications, are highlighted. Discussions on considerations for future simulations such as data sharing, and potential for better future analysis are also highlighted. Increased efforts in local data availability and a multidimensional approach in future simulations are recommended.


Author(s):  
Mehdi Hosseinpour ◽  
Kirolos Haleem

Road departure (RD) crashes are among the most severe crashes that can result in fatal or serious injuries, especially when involving large trucks. Most previous studies neglected to incorporate both roadside and median hazards into large-truck RD crash severity analysis. The objective of this study was to identify the significant factors affecting driver injury severity in single-vehicle RD crashes involving large trucks. A random-parameters ordered probit (RPOP) model was developed using extensive crash data collected on roadways in the state of Kentucky between 2015 and 2019. The RPOP model results showed that the effect of local roadways, the natural logarithm of annual average daily traffic (AADT), the presence of median concrete barriers, cable barrier-involved collisions, and dry surfaces were found to be random across the crash observations. The results also showed that older drivers, ejected drivers, and drivers trapped in their truck were more likely to sustain severe single-vehicle RD crashes. Other variables increasing the probability of driver injury severity have included rural areas, dry road surfaces, higher speed limits, single-unit truck types, principal arterials, overturning-consequences, truck fire occurrence, segments with median concrete barriers, and roadside fixed object strikes. On the other hand, wearing seatbelt, local roads and minor collectors, higher AADT, and hitting median cable barriers were associated with lower injury severities. Potential safety countermeasures from the study findings include installing median cable barriers and flattening steep roadside embankments along those roadway stretches with high history of RD large-truck-related crashes.


2016 ◽  
Vol 74 (5) ◽  
pp. 1106-1115 ◽  
Author(s):  
L. Mu ◽  
L. Fang ◽  
H. Wang ◽  
L. Chen ◽  
Y. Yang ◽  
...  

Worldwide, water scarcity threatens delivery of water to urban centers. Increasing water use efficiency (WUE) is often recommended to reduce water demand, especially in water-scarce areas. In this paper, agricultural water use efficiency (AWUE) is examined using the super-efficient data envelopment analysis (DEA) approach in Xi'an in Northwest China at a temporal and spatial level. The grey systems analysis technique was then adopted to identify the factors that influenced the efficiency differentials under the shortage of water resources. From the perspective of temporal scales, the AWUE increased year by year during 2004–2012, and the highest (2.05) was obtained in 2009. Additionally, the AWUE was the best in the urban area at the spatial scale. Moreover, the key influencing factors of the AWUE are the financial situations and agricultural water-saving technology. Finally, we identified several knowledge gaps and proposed water-saving strategies for increasing AWUE and reducing its water demand by: (1) improving irrigation practices (timing and amounts) based on compatible water-saving techniques; (2) maximizing regional WUE by managing water resources and allocation at regional scales as well as enhancing coordination among Chinese water governance institutes.


Sign in / Sign up

Export Citation Format

Share Document