Biomass dewaterability, filterability and settleability in a membrane bioreactor operated with different sludge ages

2007 ◽  
Vol 2 (1) ◽  
Author(s):  
P. Pavan ◽  
C. Cavinato ◽  
D. Bolzonella ◽  
F. Fatone ◽  
F. Cecchi

The results of 2 years experiments on thermophilic single and two-phase anaerobic co-digestion process on activated sludge and agro-wastes are presented. Solid agro-waste (mainly fruit and vegetable residuals from markets) and waste activated sludge were used as substrates. A pilot scale CSTR of 200 l working volume was used for single phase test, while an 0.8 m3 digester was added to study two-phase experiments. Treating only wasted sludge, the initial organic loading rate (OLR) was 0.7kgTVS/m3 d; then it was increased up to 2, 4 and 6 kgTVS/m3 d by OFMSW addition. Following OFMSW increase in the feed, it was found out the increase of GPR from 0.12 to 3.12 m3/m3 d and SGP from 0.16 to 0.51 m3/kgTVS in single phase. The stability of the process was showed also in the most critical operative conditions. Two phase experiments didn't show important differences to the single phase test in the range of OLRs studied up to now (up to 4 kgTVS/m3 d), clearly showing that these are not critical conditions for the process, that can be carried out in single phase in all the range studied. Considering the option of retrofitting the anaerobic digesters of the existing sludge line in WWTPs, the obtained data give important indications about process feasibility.

2011 ◽  
Vol 64 (3) ◽  
pp. 715-721 ◽  
Author(s):  
C. Cavinato ◽  
D. Bolzonella ◽  
F. Fatone ◽  
A. Giuliano ◽  
P. Pavan

This paper deals with the optimization of a two-phase anaerobic process treating biowaste for hydrogen and methane production. Neither physical nor chemical pre-treatments were used to optimize the process. The work was carried out at pilot scale, using two CSTRs (200 and 380 L working volume respectively) both maintained at thermophilic temperature (55 °C) and fed semi-continuously with biowaste. The experiment was divided into three periods; during the first two periods the organic loading rate was maintained at 20 kg TVS/m3 d and the hydraulic retention time was changed from 6.6 to 3.3 days, while in the last period the digestate of the second reactor was recirculated to the first reactor in order to buffer the system and control pH at levels around 5. The HRT was maintained at 3.3 days and the OLR was decreased at 16.5 kg TVS/m3 d. The best yield was obtained in the last period where a specific hydrogen production of 50.9 L/kg VSfed was reached, with a H2 content in biogas from the first reactor of 36%. The methanogenic stage after the hydrogen conversion reached a specific biogas production of 0.62 m3/kg VSfed and an overall organic removal above 70%, without any stability problem. The overall biogas production was some 1.5 m3 per day with a gas composition of 10% H2 and 50% CH4.


1991 ◽  
Vol 23 (7-9) ◽  
pp. 1179-1188 ◽  
Author(s):  
Sam Ghosh

An innovative pilot-scale two-phase anaerobic digestion process was developed to stabilize concentrated (7-5%) activated sludge at a 12-day SRT and a loading rate of 5 kg VS/m3 d. The pilot system exhibited an unusually high VS reduction of 73%, an aggregated carbohydrate-protein-lipid reduction of 71%, and a methane yield of 0.3 m3/kg VS added. Optimum acidogenic fermentation producing 9500 mg/l of organic acids was achieved at an HRT of 3 days and a loading rate of 16 kg VS/m3.d or higher. Enhanced acidogenic hydrolysis and prehydrolysis of polymerics and nocardial residues eliminated digester foaming. Sulfate and nitrate reductions, and syntrophic methane fermentation occurred during acidogenic conversions. Acetogenesis and aceticlastic methane fermentation were predominant in the methane digester, which generated 93% of the system methane production. Contrary to literature reports, there was no inhibition of acetogens or methanogens at a high ammonia-N concentration of 2500 mg/l and pH 7.7. The acid and methane digesters could be started quickly. They were resilient to temperature drops and loading fluctuations. Acid fermentation of 8% of the plant's WAS and addition of the resulting fermentation products (enzymes, organic acids, etc.) to the full-scale high-rate digester increased VS reduction by 46% and eliminated severe foaming. Full-scale two-phase digestion of WAS is scheduled to start in 1990.


2012 ◽  
Vol 32 (11) ◽  
pp. 2056-2060 ◽  
Author(s):  
Xiao Liu ◽  
Wei Wang ◽  
Yunchun Shi ◽  
Lei Zheng ◽  
Xingbao Gao ◽  
...  

1991 ◽  
Vol 24 (7) ◽  
pp. 59-64 ◽  
Author(s):  
R. W. Szetela

Steady-state models are presented to describe the wastewater treatment process in two activated sludge systems. One of these makes use of a single complete-mix reactor; the other one involves two complete-mix reactors arranged in series. The in-series system is equivalent to what is known as the “two-phase” activated sludge, a concept which is now being launched throughout Poland in conjunction with the PROMLECZ technology under implementation. Analysis of the mathematical models has revealed the following: (1) treatment efficiency, excess sludge production, energy consumption, and the degree of sludge stabilization are identical in the two systems; (2) there exists a technological equivalence of “two-phase” sludge with “single-phase” sludge; (3) the “two-phase” system has no technological advantage over the “single-phase” system.


2003 ◽  
Vol 48 (6) ◽  
pp. 255-262 ◽  
Author(s):  
E. Houbron ◽  
A. Larrinaga ◽  
E. Rustrian

This study attempted to investigate the feasibility of volatile fatty acid (VFA) production from coffee pulp hydrolyse, and further to determine the potential of methanization of both the pre-acidified effluent and the coffee wastewater. The experiments were carried out in 2 completely mixed reactors, each one with a working volume of 4 litres. Coffee pulp was used as substrate in the acidogenic reactor and different mixtures of pulper and wash-water and pre-acidified effluent in the methanogenic one. The acidogenic and methanogenic reactors were operated at an organic loading rate of 5 COD g.l-1.d-1 and 0.5 COD g.l-1.d-1. The total, soluble and VFA's effluent COD concentrations of the acidogenic reactor present average values of 57.75, 17.00 and 13.92 g.l-1 respectively. Under these experimental conditions, 23% (COD based) of coffee pulp was hydrolysed with a rate of 1.32 gCOD.l-1.d-1 and the soluble fraction was transformed to VFA's with an acidification efficiency of 82%. Total VFA's concentration reached a value of 13.9 gCOD.l-1, and acetate, propionate, butyrate and valerate represented 52%, 28%, 9% and 11% respectively of the liquid phase COD. In the methanogenic reactor, COD removal and methanization of fresh coffee wastewater, pre-acidified effluent and both combined occur with an efficiency of 85% to 95% respectively, with a characteristic biogas composition of 80% CH4 and 20% CO2. These results show that a humid coffee ‘Beneficio’ processing daily 23 tons of cherry coffee (fresh fruit), equipped with a two stage anaerobic digestion process could generate at least 1,886 CH4 m3.d-1. This represents an increase in methane production by a factor 3 to 5 compared to a ‘Beneficio’ using anaerobic digestion only for the treatment of its wastewater.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2381-2384 ◽  
Author(s):  
C. Polprasert ◽  
S. Kessomboon ◽  
W. Kanjanaprapin

Small-scale and pilot-scale experiments were conducted on pig wastewater treatment in water hyacinth (Eichhornia crassipesl ponds. The main objectives were to evaluate the treatment performance of the water hyacinth ponds and to determine suitable operating conditions. From the experimental results obtained, the optimum organic loading rate was found to be 200 kg COD/(ha.d), while the hydraulic retention times were proposed to be 10-20 days. The % COD removal in the small-scale water hyacinth ponds were 74-93, while for the pilot-scale ponds the % COD removal were 52-72 because of fluctuations in the influent wastewater characteristics and occasional insect attacks on the water hyacinth leaves and stems. Similar results were obtained for N removal. Although the water hyacinth ponds were found to be feasible for pig wastewater treatment, at least one polishing pond in series should be provided to polish the water hyacinth pond effluents before discharging into the environment.


2011 ◽  
Vol 64 (8) ◽  
pp. 1629-1635 ◽  
Author(s):  
M. Esparza Soto ◽  
C. Solís Morelos ◽  
J. J. Hernández Torres

The aim of this work was to evaluate the performance of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of cereal-processing industry wastewater under low-temperature conditions (17 °C) for more than 300 days. The applied organic loading rate (OLRappl) was gradually increased from 4 to 6 and 8 kg CODsol/m3d by increasing the influent soluble chemical oxygen demand (CODsol), while keeping the hydraulic retention time constant (5.2 h). The removal efficiency was high (82 to 92%) and slightly decreased after increasing the influent CODsol and the OLRappl. The highest removed organic loading rate (OLRrem) was reached when the UASB reactor was operated at 8 kg CODsol/m3d and it was two times higher than that obtained for an OLRappl of 4 kg CODsol/m3d. Some disturbances were observed during the experimentation. The formation of biogas pockets in the sludge bed significantly complicated the biogas production quantification, but did not affect the reactor performance. The volatile fatty acids in the effluent were low, but increased as the OLRappl increased, which caused an increment of the effluent CODsol. Anaerobic treatment at low temperature was a good option for the biological pre-treatment of cereal processing industry wastewater.


Sign in / Sign up

Export Citation Format

Share Document