Treatment Spent Filter Backwash Water using Dissolved Air Flotation (DAF) in Isfahan WTP

2008 ◽  
Vol 3 (3) ◽  
Author(s):  
Mohammad Hassan Mahmoodian ◽  
Mohammad Mehdi Amin ◽  
Mohammad Reza Shahmansouri ◽  
Mohammad Ghasemian

Recovering spent filter backwash water is currently receiving a great deal of attention. EPA published the Filter Backwash-Recycling Rule (FBRR) in 2001. Recycle stream may contain significant concentration of pathogens, such as, cryptosporidium and Giardia. Dissolved Air Flotation (DAF) was investigated as a possible technology alternative to simple or advanced sedimentation technology. In this study with using a pilot of DAF effluent turbidities of >20NTU could be easily obtained, when raw water turbidities were in excess of 800 NTU. Chemical requirements were low with only a single low dose of polyaluminium chloride (PACl) required binding the floc particles to form a solids matrix suitable for flotation. The results showed that the efficiency of continuous flow DAF with using PACl as coagulant for removal of Turbidity, COD, HPC, SS and MPN were 97, 72, 75, 95 and 100 percent, respectively. The statistical analyses indicated that the optimum saturation pressure is 4-5 atm, during recycle rate of 20-25 percent. The removal efficiencies of turbidity and bacteria in coagulation with sedimentation were reported up to 70 and 65 percent, while in this study using DAF with coagulant PACl could remove turbidity, COD, SS and bacterial up to 97,72, 95 and, 72 percent respectively.

2002 ◽  
Vol 2 (2) ◽  
pp. 85-90 ◽  
Author(s):  
J.K. Edzwald ◽  
J.E. Tobiason

Pilot plant research focused on the removal of Cryptosporidium oocysts by dissolved air flotation (DAF) clarification and by dual media filtration and on the impacts of the recycle of waste filter backwash water containing oocysts. No impacts from recycle of filter backwash (10% rate) were found for turbidity, particle counts (2-15 μm), and UV254 on DAF and filtration performance. DAF achieved Cryptosporidium log removals of 1.6 to 2.2 without or with recycle of filter backwash. No impacts of recycle were found on filtration, and cumulative (DAF plus filtration) log oocyst removals exceeded 4 log. Model predictions show that the fate of Cryptosporidium and the build-up of oocysts in the plant influent depend on: DAF performance, the percent of filtered water production used for backwashing, and the percent of filter backwash recycle flow. A DAF plant using 2.5% of filtered water production for backwashing and achieving 1.6 log removal or greater of oocysts by DAF clarification will not have a build-up of oocysts in the plant influent regardless of the recycle rate.


2001 ◽  
Vol 43 (8) ◽  
pp. 59-66 ◽  
Author(s):  
A. Eades ◽  
B. J. Bates ◽  
M. J. MacPhee

There is increasing interest in treating recovered spent filter backwash water in the drinking water industry. In the USA the Filter Backwash Recycling Rule will come into effect in the near future. The purpose of the Rule is to prevent the concentrated pathogenic agents, potentially in the filter backwash water, from being returned to the head of the water treatment works without some form of treatment or dilution. By treating this flow both public health and financial liability can be better managed by the operating utility. Dissolved Air Flotation (DAF) was investigated as a possible technology alternative to simple or advanced sedimentation techniques. This application is not widespread but sits somewhere in between the two normal applications of DAF as a high solids sludge thickener and a low turbidity clarification system. Given this a pilot plant program, supported by jar testing, was undertaken to determine the process capability and the design parameters for this application. DAF proved to be very suitable for backwash water recovery. DAF effluent turbidities of <1.0 NTU could be easily obtained, when raw water turbidities were in excess of 50 NTU. Chemical requirements were low with only a single low dose of polymer required to bind the floc particles to form a solids matrix suitable for flotation. Flocculation contact times ranged from 0–10 minutes depending on the nature of the raw water. Recycle rates as low as 5% performed satisfactorily with no significant improvement when increased to 20%. Sludge solids of 3.5–9.6% dry solids were found and very low volumes of sludge, <0.1% of the incoming flow make the DAF solids handling system very compact.


2001 ◽  
Vol 43 (8) ◽  
pp. 43-49 ◽  
Author(s):  
M. A. P. Raeli ◽  
M. Marchetto

This paper presents the results of an experimental investigation about the performance of a horizontal flow high-rate pilot scale Dissolved Air Flotation (HRDAF) unit containing inclined parallel plates for treating a coloured and low turbidity raw water. Experiments were performed with the DAF unit in order to verify the influence on flotation of : (i) the water velocity (Vh) between the plates, in the range 18 to 96.5 cm.min−1 with corresponding Reynolds numbers between 240 and 1060; (ii) the supplied air (S*) value ranging from 2.2 to 8.5 g of air/m3 of water ; (iii) the angle of the plates (60° or 70°). The best pilot plant operational condition was obtained applying only 4.0 g/m3 (S*) with Vh around 18 cm.min−1 for treatment of water coagulated with a Al2(SO4)3 dosage of 40 mg.l−1. In these conditions, the unit presented very good removal efficiencies of colour (90%, residual of 10 uC), turbidity (88%, residual of 0.8 NTU ) and TSS (94%, residual of 1.8 mg.l−1). Furthermore, the unit could operate at higher Vh values up to 76 cm.min−1 and still present good results. The DAF unit thus behaved as a high rate unit presenting good performance with low air requirement.


2001 ◽  
Author(s):  
◽  
Rachigan Rajagopaul

Historically inorganic coagulants were the coagulants of choice for OAF treatment of potable water. Water treatment practitioners using OAF technology preferred ferric chloride, an inorganic coagulant. Ferric chloride formed light, floatable floes at relatively low flocculation intensities and detention times. The inorganic coagulant was also more forgiving during incidents of overdosing and raw water and pH variability


2004 ◽  
Vol 4 (5-6) ◽  
pp. 35-41
Author(s):  
X. Zhang ◽  
S. Zhang ◽  
Y. Liu

Compact flofilter of dissolved air flotation and GAC deep bed filtration is a good integrated procedure, having the following characteristics: flotation and filtration are integrated in one tank, the flotation unit is above the filtration unit, filtration is GAC deep bed, and conventional and advanced treatments are integrated in one tank. During the treatment of algae-laden raw water with compact flofilter of dissolved air flotation and GAC deep bed filtration, the general performance was good: the outlet algae-count was 1.21×105–1.26×106 cell/l, the average removal of algae was 95.4%, the outlet chl-a was 0.68 μg/l, the removal of chl-a was 92.2%, the outlet turbidity was 0.16–0.20 NTU, the outlet had no odor, the outlet color was 3, the removal of color was 86.4%, the outlet Al-residual was 0.011 mg/l. Good removal of organics can be achieved: the average removal of UV254 was 54.3%, the outlet UV254 was 0.016–0.018 cm−1, the removal of DOC was 29.6%, the outlet DOC was 1.608 mg/l, the removal of BDOC was 42.6%, the outlet BDOC was 0.120 mg/l, the removal of AOC was 72.2%, the outlet AOC was 52 μg/l. Filter run period and UFRV were 36 h and 504 m3/m2. The results show that flofilter is a good alternative process for conventional treatment plus GAC adsorption.


2006 ◽  
Vol 6 (1) ◽  
pp. 87-93 ◽  
Author(s):  
B. Gorczyca ◽  
G. Zhang

Properties of alum and polyaluminium chloride (PACl) flocs were analyzed in order to explain solid/liquid separation behavior of these aggregates in dissolved air flotation and gravity settling. PACl flocs settle better and are less sensitive to changes in water temperature than alum flocs. Therefore, PACl flocs may be more suited for gravity separation, especially in cold waters, and alum flocs may be preferred for flotation. At an optimum coagulant dose for dissolved air flotation the logarithmic mean size of alum flocs was close to the size of the air bubbles (30 μm) and the proportion of flocs smaller than 20 μm was about 30.5%.


REAKTOR ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 43
Author(s):  
I Nyoman Widiasa ◽  
A A Susanto ◽  
B Budiyono

Abstrak Mikroalga merupakan mikroorganisme fotosintetik prokariotik atau eukariotik yang dapat tumbuh dengan cepat. Pemanfaatan mikroalga tidak hanya berorientasi sebagai pakan alami untuk akuakultur, tetapi terus berkembang untuk bahan baku produksi pakan ternak, pigmen warna, bahan farmasi (β-carotene, antibiotik, asam lemak omega-3), bahan kosmetik, pupuk organik, dan biofuel (biodiesel, bioetanol, biogas, dan biohidrogen. Studi ini bertujuan untuk menginvestigasi kombinasi ultrafiltrasi (UF) – dissolved air flotation (DAF) untuk pemekatan mikroalga skala laboratorium. Hasil penelitian menunjukkan bahwa penurunan fluks membran UF secara tajam sebagai akibat dari deposisi sel mikroalga terjadi pada 20 menit pertama proses filtrasi. Backwash pada interval 20 menit selama 10 detik dengan tekanan 1 bar memberikan pengendalian fouling yang efektif dalam nilai kestabilan fluks yang layak. Membran UF yang digunakan dapat memberikan selektivitas pemisahan biomassa mikroalga ~ 100%. Kualitas permeat sangat stabil, yaitu kekeruhan < 0,5 NTU, kandungan organik < 10 mg/L, dan warna < 10 PCU. Lebih lanjut, pemekatan retentat membran dengan DAF pada tekanan saturasi 6 bar dapat menghasilkan pasta mikroalga dengan konsentrasi 20 g/L. Koagulan PAC perlu ditambahkan kedalam umpan DAF dengan dosis 1,3–1,6 mg PAC/mg padatan tersuspensi.   Kata Kunci: ultrafiltrasi; dissolved air flotation; pemanenan mikroalga; pemekatan mikroalga   Abstract COMBINATION OF Ultrafiltration and Dissolved Air Flotation for Microalgae CONCENTRATION. Microalgae is a prokaryotic photosynthetic microorganism or eukaryotic microorganism  that proliferate rapidly. Cultivation of the microalgae is not only oriented  as natural food for aquacultures, but also developed  for animal food, color pigment, pharmaceutical raw material (β-carotene, antibiotic, fatty acid omega-3), cosmetic raw material, organic fertilizer, and biofuels (biodiesel, bioethanol, biogas, and biohydrogen. This study is aimed to investigate the potential of combination of ultrafiltration (UF) and dissolved air flotation  (DAF) for concentration of microalgae in laboratory scale. The experimental results showed that fluxes of the UF membrane decreased sharply due to deposition of microalgae biomass during first 20 minutes of filtration. Periodically backwash using the UF permeate (backwash  interval = 20 minutes;  backwash duration = 10 seconds;  backwash pressure = 1 bar) gave an effective fouling control to maintain reasonable stable fluxes. In addition,  the UF membrane gave separation of microalgae biomass ~ 100%. Permeate quality is strongly stable in which turbidity < 0.5 NTU, organic content < 10 mg/L, and color < 10 PCU.  Moreover, concentration of the UF retentate by DAF under saturation pressure of 6 bars was able to produced microalgae feedstock having 20 g/L dry microalgae. PAC is required for DAF feed with dosage of 1.3–1.6 mg PAC/mg suspended solids.


2007 ◽  
Vol 56 (10) ◽  
pp. 109-115 ◽  
Author(s):  
Mooyoung Han ◽  
Tschung-il Kim ◽  
Jinho Kim

Dissolved air flotation (DAF) is a method for removing particles from water using micro bubbles instead of settlement. The process has proved to be successful and, since the 1960s, accepted as an alternative to the conventional sedimentation process for water and wastewater treatment. However, limited research into the process, especially the fundamental characteristics of bubbles and particles, has been carried out. The single collector collision model is not capable of determining the effects of particular characteristics, such as the size and surface charge of bubbles and particles. Han has published a set of modeling results after calculating the collision efficiency between bubbles and particles by trajectory analysis. His major conclusion was that collision efficiency is maximum when the bubbles and particles are nearly the same size but have opposite charge. However, experimental verification of this conclusion has not been carried out yet. This paper describes a new method for measuring the size of particles and bubbles developed using computational image analysis. DAF efficiency is influenced by the effect of the recycle ratio on various average floc sizes. The larger the recycle ratio, the higher the DAF efficiency at the same pressure and particle size. The treatment efficiency is also affected by the saturation pressure, because the bubble size and bubble volume concentration are controlled by the pressure. The highest efficiency is obtained when the floc size is larger than the bubble size. These results, namely that the highest collision efficiency occurs when the particles and bubbles are about the same size, are more in accordance with the trajectory model than with the white water collector model, which implies that the larger the particles, the higher is the collision efficiency.


1995 ◽  
Vol 31 (3-4) ◽  
pp. 63-71 ◽  
Author(s):  
Donald Q. Bunker ◽  
James K. Edzwald ◽  
Jan Dahlquist ◽  
Lars Gillberg

Pretreatment considerations of coagulant selection, flocculation time and flocculation mixing intensity were studied for two different water supply types, aquatic humic and non-aquatic humic waters of low turbidity. Alum, ferric salts, and various polyaluminium chlorides (PACs) with different chemical properties were all effective in dissolved air flotation (DAF) when used under favorable conditions of dosage, pH, and flocculation time. A stoichiometry was found for the aluminium coagulants between coagulant dose and raw water DOC. Si and sulfate PACs were effective in treating cold waters with short flocculation times of 2.5 to 5 minutes. Flotation performance improved slightly with increasing flocculation mixing intensity. The results suggest that flocculation tanks be designed to produce strong, “pinpoint” size floc particles.


2017 ◽  
Vol 6 (2) ◽  
pp. 48-55
Author(s):  
Еськин ◽  
A. Es'kin

This paper presents a new method of dissolved air flotation with spraying of liquid. Liquid that needs cleaning is sprayed inside an overhead reservoir through a hydraulic nozzle allowing to enlarge the contact area between phases in comparison with traditional method of saturation by barbotage. Suggested method makes it possible to increase the gas content of the liquid processed for cleaning into a flotation section. This paper also contains the results of experimental investigation of the effectiveness of liquid saturation inside the overhead reservoir using spray-centrifugal and spray-percussive nozzles. Volumetric method was used to measure the amount of air escaping during dissolved air flotation and the results of the measurement were used to calculate the speed of barbotage. It was identified that when the method of spraying of liquid is applied, the amount of soluble air increases on average by 33% in comparison with overhead reservoir of bubbling type. The speed of barbotage increases with growth of saturation pressure and significantly depends on the area of the flotation section. If the saturation pressure exceeds 2 bars, the speed of barbotage in the center of the flotation cell becomes significantly higher than in the wall area.


Sign in / Sign up

Export Citation Format

Share Document