Energy efficiency in the water industry, a Global Research Project

2011 ◽  
Vol 6 (2) ◽  
Author(s):  
Malcolm Brandt ◽  
Roger Middleton ◽  
Gordon Wheale ◽  
Frans Schulting

After manpower, energy is the highest operating cost item for most water and wastewater companies. Over the last decade, energy consumption by the sector has increased considerably as a consequence of the implementation of new technologies to meet new potable water and effluent treatment quality standards. The price of energy has also increased substantially in the same period. These increases will be compounded by the need to meet future changes to regulations and standards that will require additional energy intensive processes to achieve more exacting requirements. High energy consumption will affect the water industry world wide and is inextricably linked to the issue of Climate Change. This international research project has focused on identifying current energy efficient best practices and technologies in the efficient design and operation of water industry assets for the whole water cycle from abstraction to discharge, including water treatment and distribution, wastewater conveyance and treatment; water reuse; sludge treatment and disposal and water conservation. Opportunities have also been identified for hydraulic energy recovery from turbines and generation from waste and sludge through CHP technology. The study output is a Compendium of global best practices covering the water cycle matrix and includes variations between regions and continents, large urban and small rural systems and complex high and simple low technical solutions. International case studies are used to illustrate best practices. On behalf of Global Water Research Coalition (GWRC) partners world-wide as represented by four Continental Coordinators in the US, Europe, Singapore and Australasia, and South Africa, the project was managed by UK Water Industry Research (UKWIR). This presentation will give the background to the project and use case studies to illustrate the study findings and future opportunities to help deliver both incremental improvements in energy efficiency through optimisation of existing assets and operations and more substantial improvements in energy efficiency from the adoption of novel but proven technologies.

2012 ◽  
Vol 3 (1) ◽  
pp. 11-17 ◽  
Author(s):  
J. Frijns ◽  
R. Middleton ◽  
C. Uijterlinde ◽  
G. Wheale

Energy costs and climate change challenges the water industry to improve their energy efficiency. The number of examples of energy measures in water production and treatment is growing rapidly. In this paper, best practices of energy efficiency from the European water industry are presented with the objective of learning from each other. The best practices are collected within the framework of the Global Water Research Coalition's attempt to devise a global compendium ‘Best practices in the energy efficient design and operation of water industry assets’. The case studies in the compendium show significant energy savings in all parts of the water cycle. Examples with potential include the improved operational set up of pumping design, on line aeration control, and energy-efficient bubble aerators and sludge belt thickeners. Next to optimising energy efficiency across the water cycle, there are also opportunities for energy generation. Promising practices include biogas production from sludge (co)digestion and hydraulic energy generation from micro-turbines.


2020 ◽  
Vol 81 (5) ◽  
pp. 876-890
Author(s):  
John N. Zvimba ◽  
Eustina V. Musvoto

Abstract About 55% of energy used in the South African water cycle is for wastewater treatment, with the bulk of this energy associated with aeration in biological processes. However, up to 15% of wastewater energy demand can be offset by energy generation from sludge (power and/or combined heat and power), while best practices adoption can deliver energy efficiency gains of between 5% and 25% in the water cycle. Advanced process modelling and simulation has been applied in this study as a tool to evaluate optimal process and aeration control strategies. This study further applied advanced modelling to investigate and predict the potential energy consumption and consumption cost pattern by the South African wastewater sector resulting from implementation of optimal process and aeration energy use reduction strategies in support of sustainable municipal wastewater management. Aeration energy consumption and cost savings of 9–45% were demonstrated to be achievable through implementation of energy conservation measures without compromising final effluent regulatory compliance. The study further provided significant potential future energy savings as high as 50% and 78% through implementation of simple and complex aeration energy conservation measures respectively. Generally, the model-predicted energy savings suggest that adoption of energy efficiency should be coupled with electricity generation from sludge in order to achieve maximum energy consumption and cost savings within the South African wastewater services sector.


2012 ◽  
Vol 516-517 ◽  
pp. 1184-1187
Author(s):  
Heng Sun ◽  
Dan Shu ◽  
Hong Mei Zhu

One-stage pre-cooled mixture refrigerant cycle can be applied in small-scale LNG plant and be special suitable for skit mounted LNG plant. It has different character with the C3MR cycle used in large-scale LNG plant. The optimization of the mixture refrigerant is carried out using HYSYS software. The effect of the main process parameters on the performance of the cycle is calculated and discussed. The result shows that appropriate ranges of the process parameters exist. Higher and lower values of the parameters will increase the energy consumption significantly. The results also indicate that the optimization of the one-stage pre-cooled mixture refrigerant cycle can obtain rather high energy efficiency that is competitive with that of the SMR which is widely employed in small-scale LNG plant.


2021 ◽  
Vol 64 (2) ◽  
pp. 89-94
Author(s):  
N. A. Cheremiskina ◽  
N. V. Shchukina ◽  
N. B. Loshkarev ◽  
V. V. Lavrov

One of the most energy-intensive industries is ferrous metallurgy. The metallurgical sector in industrially developed countries is reducing its specific energy consumption per one ton of products by approximately 1.0 – 1.5 % per annum. In Russia, obsolete technology is the main reason for the high-energy intensity of industrial product. Energy saving in industrial production is associated with production technology and the scope of fuel and energy resources consumption. Therefore, ways to improve energy efficiency focus on reducing energy consumption of any kind during a specific process in a specific process or thermal unit. Ensuring the economical operation of furnace units requires detailed preliminary and verification analyses, upgrading and introduction of state-of-the-art equipment. The study presents a flow diagram and features of thermal operation of a new drum-type chamber furnace for heating metal products for quenching. The technical parameters of the furnace, the results of the thermo-technical analysis, the heat balance and the specific fuel consumption as applicable to the created design are also presented. The flow diagram of the furnace has significant advantages in terms of the energy efficiency of fuel as compared to the roller and conveyor methods of metal transportation. Placing blanks on the drum significantly reduces the complexity of their transportation. Thanks to its small length the proposed design is compact and easy to place in a workshop. The use of a recuperative fuel burning device allows the efficient use of the heat of waste gases in the heating process. The proposed design and method of products transportation in the furnace working space can be used for the heat treatment of bars, pipes, strips, as well as rolled steel of various shapes.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2218
Author(s):  
Francisco J. Rey Martínez ◽  
Julio F. San José Alonso ◽  
Eloy Velasco Gómez ◽  
Ana Tejero González ◽  
Paula M Esquivias ◽  
...  

The high energy consumption of cooling systems justifies the need for strategies to increase the efficiency of the facilities, in order to reduce the related CO2 emissions. This study aims to improve the performance and reduce the energy consumption of an 8.6 MW air cooled chiller. This installed capacity is biased due to the screw compressors, of 2.98 Energy Efficiency Ratio (EER) at full load (characteristics provided by the manufacturer). The chiller unit has been modified by placing evaporating cooling pads before the condensing coils. The chiller has been monitored for three months, recording over 544,322 measurements (5 min-step data), with and without the evaporative cooling pads, to assess the performance. Data comparison has been done by selecting two days (with and without evaporative panels) with the same health care load and temperatures. Implementing the proposed strategy yields an improvement in the European Seasonal Energy Efficiency Ratio (ESEER) from 3.69 to 4.83, while the Total Equivalent Warming Impact (TEWI) decreases about 1000 tCO2. Energy savings of up to 32.6 MWh result into a payback period lower than 2 years.


2013 ◽  
Vol 805-806 ◽  
pp. 1519-1523 ◽  
Author(s):  
Chang Feng Wang ◽  
Guo Qiang Fan

In order to solve problems of high energy consumption and poor indoor thermal comfort in existing rural residential buildings, Tianjin city developed Tianjin energy efficiency standard for rural residential buildings, the building envelope insulation technique in the standard-including determination of heat transfer coefficient, principle of choosing insulation materials for building envelope, energy efficiency standards of walls, windows, and roofs are unscrambled particularly in this paper. It is suggested that natural materials and appropriate techniques are used to achieve the energy-saving goal for rural residential buildings with minimum energy consumption.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3572 ◽  
Author(s):  
Nadine Bou Dargham ◽  
Abdallah Makhoul ◽  
Jacques Bou Abdo ◽  
Jacques Demerjian ◽  
Christophe Guyeux

In Body Sensor Networks (BSNs), two types of events should be addressed: periodic and emergency events. Traffic rate is usually low during periodic observation, and becomes very high upon emergency. One of the main and challenging requirements of BSNs is to design Medium Access Control (MAC) protocols that guarantee immediate and reliable transmission of data in emergency situations, while maintaining high energy efficiency in non-emergency conditions. In this paper, we propose a new emergency aware hybrid DTDMA/DS-CDMA protocol that can accommodate BSN traffic variations by addressing emergency and periodic traffic requirements. It takes advantage of the high delay efficiency of DS-CDMA in traffic burst, and the high energy efficiency of DTDMA in periodic traffic. The proposed scheme is evaluated in terms of delay, packet drop percentage, and energy consumption. Different OPNET simulations are performed for various number of nodes carrying emergency data, and for various payload sizes. The protocol performance is compared to other existing hybrid protocols. Results show that the proposed scheme outperforms the others in terms of delay and packet drop percentage for different number of nodes carrying emergency data, as well as for different payload sizes. It also offers the highest energy efficiency during periodic observation, while adjusting the energy consumption during emergency by assigning spreading codes only to nodes holding emergency data.


Sign in / Sign up

Export Citation Format

Share Document