scholarly journals Features of separation water hazard in China coalmines

2017 ◽  
Vol 12 (1) ◽  
pp. 146-155 ◽  
Author(s):  
Herong Gui ◽  
Manli Lin ◽  
Xiaomei Song

Separation water is a commonly-seen water hazard in China coalmines. This article, built on case studies of disasters caused by separation water, analyzes the key influencing factors in the formation of separation and the water hazard, as well as the features and causes of explosive, delayed explosive, and intermittent separation water burst. The article takes as an example of one accident caused by roof bed separation water burst in the 745 working face of Haizi Coalmine. The study has a particular interest in separation water burst accompanied by rock burst when mining under thick-hard igneous rock. The results are of reference to countries with similar mining conditions and researches on separation water burst and hazard control in coalmines.

2010 ◽  
Vol 156-157 ◽  
pp. 207-210
Author(s):  
Zhi Jie Wen ◽  
Lian Jun Chen ◽  
Xiao Dong Zhao ◽  
Chuan Zhang

In order to effectively prevent the rock burst occurrence for mining patter with no pillar, the reason and its realization condition of rock burst were studied; the stope structure mechanics model with working face mining was built; four phases of rock burst occurrence with mining were proposed; the relationship between rock burst occurrence and abutment pressure law of development was analyzed, time-space coupling relationship of rock burst and its relevant information for rock burst control were obtained.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhihua Li ◽  
Ke Yang ◽  
Jianshuai Ji ◽  
Biao Jiao ◽  
Xiaobing Tian

A case study based on the 401103 fully mechanized caving face in the Hujiahe Coal Mine was carried out in this research to analyze the rock burst risks in a 54 m-wide coal pillar for roadway protection. Influencing factors of rock burst risks on the working face were analyzed. Stress distribution characteristics on the working face of the wide coal pillar for roadway protection were discussed using FLAC3D numerical simulation software. Spatial distribution characteristics of historical impact events on the working face were also investigated using the microseismic monitoring method. Results show that mining depth, geological structure, outburst proneness of coal strata, roof strata structure, adjacent mining area, and mining influence of the current working face are the main influencing factors of rock burst on the working face. Owing to the collaborative effects of front abutment pressure of the working face and lateral abutment pressure in the goaf, the coal pillar is in the ultimate equilibrium state and microseismic events mainly concentrate in places surrounding the coal pillars. Hence, wide coal pillars become the regions with rock burst risks on the working face. The working face adopts some local prevention technologies, such as pressure relief through presplitting blasting in roof, pressure relief through large-diameter pores in coal seam, coal seam water injection, pressure relief through large-diameter pores at bottom corners, and pressure relief through blasting at bottom corners. Moreover, some regional prevention technologies were proposed for narrow coal pillar for roadway protection, including gob-side entry, layer mining, and fully mechanized top-coal caving face with premining top layer.


2013 ◽  
Vol 368-370 ◽  
pp. 1726-1731
Author(s):  
Yi Ming Wang ◽  
Ming Qing Huang ◽  
Ai Xiang Wu ◽  
Gao Hui Yao ◽  
Kai Jian Hu

Goafs formed in mine-out areas threat the underground mines owing to possibilities of rock burst and surface subsidence. This paper aims to discuss the feasibility, design and construction of waste rock backfill in abandoned stopes. Based on goafs distribution and stabilities in the White Bull Mine, rock backfill system with a total volume of 362,000 m3in 8 gobs was designed and carried out. The system included technologically and economically feasible stopes, conveying equipments of tramcars, rock transfer by electric rakes, haulage network and mining workings. Field effects showed that rock backfill was applicable to control potential hazards. With rock filling, goaf utilization rates ranged from 60% to 70%, which helped to control adjacent rock movement, eliminate rock burst and surface subsidence. Additionally, backfill construction reduced the lift and transportation costs of rocks by about 50%, which further lowered the land usage of surface dumping.


2021 ◽  
Vol 261 ◽  
pp. 03003
Author(s):  
Qin Ke ◽  
Peng Dong ◽  
Duan Huijun

two roadways in adjacent working face of Baode Mine may have the risk of water inrush at the same time, so it is necessary to construct long borehole to cover the roadway excavation. On the basis of the hydrogeological conditions of the mine, the safe water insulation thickness and water inrush coefficient of coal seam No .8 are calculated. The results show that the water inrush coefficient is 0.035-0.037 MPa/m, which is less than the critical value 0.06 MPa/m and the bottom plate has no sudden water hazard. In the construction of No .10 coal seam, the directional long borehole is used to detect whether there is a hidden structure communicating with the floor limestone and to drain water. The test shows that there is no effluent phenomenon in the borehole, which proves that there is no hidden structure in No .10 coal seam.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Shuai Di

Deep rock burst accidents occur frequently and become increasingly serious. Further improving the effectiveness and accuracy of the prevention and control of rock burst, ensuring the safe and efficient production of mines, clarifying the basic causes of disasters, and refining the type of deep rock burst are the most important key links. Aiming at the problems such as unclear incentives and types and the lack of effective and targeted prevention measures of deep rock burst, taking Xin’an Mine as the research background, based on the energy theory, the coal and rock mass multisource energy unified equation was established to analyze coal and rock mass instability mechanism. According to the different degrees of participation of various factors, the types of deep rock burst are determined as three categories and four types, and the corresponding judgment criteria are proposed. The precise prevention and control system for the source of rock burst with Xin’an characteristics is proposed, successfully applied to the 8101 working face, which not only guarantees the safe production of the working face, but also achieves good economic benefits. The research results lay the foundation for improving the accuracy and precision of the prevention and control of deep rock burst and provide theoretical guidance for the safe and efficient mining of the mine.


2019 ◽  
Vol 14 (4) ◽  
pp. 851-862
Author(s):  
Herong Gui ◽  
Rongjie Hu ◽  
Honghai Zhao ◽  
Jun Li ◽  
Xiaomei Song ◽  
...  

Abstract Among all recorded water disasters in China coalmines, 10% can be attributed to surface water, making it one of the top water hazards. Based on the analysis of cases of surface water hazards in China coalmines, this article determined surface water sources and inrush conduits as the major factors that have caused water inrush disasters in mines, and classified surface water hazards in China coalmines into 15 types according to those major factors and gave definitions of each type of surface water hazard. Then, it is proposed that there are different types of surface water hazards in different coal-bearing regions by analyzing the relationship to terrain features, climatic impact and mining conditions. Finally, we discuss how typical water sources and inrush conduits work together in hazard formation, in addition to the characteristics and corresponding preventative technologies. The propositions can be of reference for exchanges with other mining countries and regions on surface water hazard treatment.


Sign in / Sign up

Export Citation Format

Share Document