scholarly journals Exploration and application of directional long boreholes in coal measure strata

2021 ◽  
Vol 261 ◽  
pp. 03003
Author(s):  
Qin Ke ◽  
Peng Dong ◽  
Duan Huijun

two roadways in adjacent working face of Baode Mine may have the risk of water inrush at the same time, so it is necessary to construct long borehole to cover the roadway excavation. On the basis of the hydrogeological conditions of the mine, the safe water insulation thickness and water inrush coefficient of coal seam No .8 are calculated. The results show that the water inrush coefficient is 0.035-0.037 MPa/m, which is less than the critical value 0.06 MPa/m and the bottom plate has no sudden water hazard. In the construction of No .10 coal seam, the directional long borehole is used to detect whether there is a hidden structure communicating with the floor limestone and to drain water. The test shows that there is no effluent phenomenon in the borehole, which proves that there is no hidden structure in No .10 coal seam.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jingzhong Zhu ◽  
Yu Liu ◽  
Qimeng Liu ◽  
Sen Yang ◽  
Jiajun Fan ◽  
...  

The coal-forming period is mainly Permian and Carboniferous in the North China coalfield, which is one of the main coal accumulating areas in China. It is characterized by high coal rank, abundant reserves, and varieties. However, water outburst accidents originating from karst aquifers under the coal seam floor have become a terrible disaster in accompany with the deep coal exploited progressively. Water inrush events of the deep limestone have often occurred during excavation in mines. To decrease the risk of high confined water from the coal seam floor and ensure the mining under the safe water pressure of limestone aquifers, the comprehensive exploration and regional treatment are all implemented, such as drainage depressurization, curtain grouting, and grouting transformation of aquifers. Through the comprehensive treatment of the ground and underground, the water channel will be effectively filled with slurry to prevent limestone water bursting into the roadway, and the value of water-inrush coefficient is decreased below the critical value. In the study, utilizing COMSOL Multiphysics based on the finite element method to verify and determine the real layout of grouting parameters, the result shows the design plans satisfy the engineering requirements. 13321 working face located in South No.1 mining area has analyzed the effect of water hazard prevention and control. On the basis of the analysis of geophysical prospecting and validation boreholes, it is concluded that the fracture is filled with grouting slurry to block water-conducting channel effectively. In turn, the rational design parameters of grouting are confirmed as well. Finally, the water-inrush coefficient of Taiyuan formation limestone and Ordovician limestone water is calculated, respectively. The result shows that water-inrush coefficient is less than the critical value after treatment, the safety of excavating coal seam can be further assured.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Fang ◽  
Lei Tian ◽  
Yanyan Cai ◽  
Zhiguo Cao ◽  
Jinhao Wen ◽  
...  

The water inrush of a working face is the main hidden danger to the safe mining of underwater coal seams. It is known that the development of water-flowing fractured zones in overlying strata is the basic path which causes water inrushes in working faces. In the engineering background of the underwater mining in the Longkou Mining Area, the analysis model and judgment method of crack propagation were created on the basis of the Mohr–Coulomb criterion. Fish language was used to couple the extension model into the FLAC3d software, in order to simulate the mining process of the underwater coal seam, as well as to analyze the initiation evolutionary characteristics and seepage laws of the fractured zones in the overlying strata during the advancing processes of the working face. The results showed that, during the coal seam mining process, the mining fractured zones which had been caused by the compression-shear and tension-shear were mainly concentrated in the overlying strata of the working face. Also, the open-off cut and mining working face were the key sections of the water inrush in the rock mass. The condition of the water disaster was the formation of a water inrush channel. The possible water inrush channels in underwater coal mining are mainly composed of water-flowing fractured zones which are formed during the excavation processes. The numerical simulation results were validated through the practical engineering of field observations on the height of water-flowing fractured zone, which displayed a favorable adaptability.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lingzhi Sun ◽  
Yunyue Xie ◽  
Hongtian Xiao

This paper predicts the possibility of water inrush from a confined aquifer under the action of mining activities and water pressure. The study uses numerical analyses to evaluate stress redistribution and crack growth which result from coal extraction operations. Two models are presented in this study. By simplifying the distribution of the disturbed vertical stress on the coal seam and floor around a working face, a model is established to analyze the additional stresses in the floor strata induced by mining activities. And some distribution features of all the additional stress components are described. By using the superposition principle in fracture mechanics, another model is developed to analyze the crack growth in the floor strata under the action of disturbed stresses and water pressure. And the stress intensity factors at the crack tip are presented and the process of crack growth is obtained in the advancement of a working face. Because of discretizing only loading areas and crack surfaces, the present methods can obtain the accurate numerical results. Finally, some suggestions are made for preventing the water inrush from a confined aquifer.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Feisheng Feng ◽  
Jiqiang Zhang ◽  
Zhen Yang ◽  
Dongdong Pang ◽  
Jing Zhang

The water burst of roof on working face has been one of the significant geotechnical engineering problems that needs to be urgently resolved. The coupling effects of seepage and damage on the amount and intensity of water inrush from the roof are critically important. In this paper, the seepage-damage coupling mathematical model of the aquifer in the working face is studied, and the seepage-damage coupling mechanics model at different stages of the aquifer is established. Under the coupling of permeability and damage, the water-soil characteristics of the aquifer in the 101163 working face of Mindong were numerically simulated by establishing the constitutive relation between vertical stress and permeability coefficient. The numerical results show that the stress concentration factor of the mining stress field gradually increases with the coal seam mining. The water-flowing fractured zone of the overburden is close to the communication of the quaternary aquifer. When the coal seam is excavated 250–300 m. Three free surfaces appear in the groundwater pressure field, and a large falling funnel is formed to establish a deep flow S-well well flow model. The research on the mining stress field and seepage field is carried out in combination with the Jakob formula. It is found that two sectors with reduced permeability of the fan surface are formed in front of the work. The variation law of the apocalyptic permeability infiltration under different mining distances, different coal seam thicknesses, different water pressures, and different roof management modes is studied systematically. The research indicates that the seepage flow under the condition of seepage infiltration of the lower aquifer should be between 50% and 100% of the traditional calculation method. The research results can help to deepen the understanding of the process of water inrush under the coupling of stress and seepage.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qingliang Chang ◽  
Xingjie Yao ◽  
Chongliang Yuan ◽  
Qiang Leng ◽  
Hao Wu

Water inrush disasters are extremely prone to occur if the coal seam floor contains a confined aquifer. To find out the failure behavior of coal seam floor of paste filling working face, a beam-based theoretical model for the floor aquifuge was built, and then, the water inrush risk was evaluated based on the thickness of floor aquifuge. Next, the floor failure characteristics of the paste filling face was numerically studied and the effects of the filling interval and long-term strength of the filling body on the floor failure depth, stress and displacement distributions, and plastic zone were explored. The results showed that the theoretical model for evaluating the safety of the floor of the paste filling face based on the empty roof distance is proved to be consistent with that of the empirical formula judged based on the assumption that the paste filling working face was regarded as a cut hole with a certain width. The filling interval has a significant effect on the stress concentration of the surrounding rock, failure depth of floor, and roof-floor convergence. The smaller the filling interval is, the smaller their values are. When the filling rate is 98%, the long-term strength of the filling body is 5 MPa, and the floor failure depth is not more than 4 m. In contrast, the strength of the filling body has no obvious influence on the floor failure depth, but it has a certain impact on the roof-floor convergence. From the perspective of reducing floor failure depth, there is no need to increase the long-term strength of backfill, but it is necessary to increase the early strength of backfill so as to reduce the width of the equivalent roadway.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhengzheng Cao ◽  
Yulou Ren ◽  
Qinting Wang ◽  
Banghua Yao ◽  
Xinchao Zhang

There are many karst collapse columns in coal seam roof in the southern coal field in China, which are different from those in coal seam floor in the northern coal field, due to the stratum characteristics. The karst collapse column in coal seam roof tends to reactivate and conduct water and induce the serious water inrush disaster, when the karst collapse column communicates with the overlying aquifer. In order to reveal the evolution mechanism of water-conducting channel of collapse column in karst mining area of southwest China, the aquifers and water inflow rule in 1908 working face in Qianjin coal mine are analyzed. Besides, the particle size distribution and mineral component of collapse column are researched by the X-ray diffraction test and the screening method, which are the basis for researching the water inrush mechanism in karst collapse column. On this basis, the water inrush of roof collapse column under the influence of mining is researched by establishing the numerical calculation model with the UDEC numerical software. The results show that the water flowing into the 1908 working face comes from the Changxing formation aquifer and Yulongshan formation aquifer above the coal seam, and the proportion of coarse particles and fine particles in collapse column is 89.86% and 10.14%, respectively. With the advance of working face, the water-conducting channel connected the working face with the aquifer, or the surface is formed by collapse pits, karst caves, and collapse column. The research results can be treated as an important basis for the water-preserved mining in southern coal field in China.


2015 ◽  
Vol 744-746 ◽  
pp. 1728-1732 ◽  
Author(s):  
Wei Tao Liu ◽  
Shi Liang Liu ◽  
Yan Shuang Sun

According to the nonlinear dynamic characteristic of coal seam floor water inrush, coal seam floor water inrush risk evaluation which includes 4 first level indicators,14 level two indexes was built based BP neural network. According to the test collection of engineering data, coal seam floor water inrush risk evaluation system based VB and MATLAB is reliable. Application to a mine coal seam No.2 working face was verified. The results show that, the evaluation method in water inrush is feasible, reasonable.


2021 ◽  
Author(s):  
Haitao Xu ◽  
hui yang ◽  
Wenbin Sun ◽  
Lingjun Kong ◽  
Peng Zhang

Abstract In order to find out the characteristics of geological isomer exposed in the mining process of 12318 working face in Pansan Mine and grasp its influence law on subsequent coal seams mining, the isomer was firstly determined as the collapse column by means of 3D seismic, transient electromagnetic detection, SYT detection and other methods, and its development characteristics, conductivity and water enrichment were identified.Then FLAC3D numerical simulation software was used to analyze the characteristics of vertical stress and plastic failure zone in different coal seams during mining.Finally, by comparing the ultimate failure depth of floor and the thickness of waterproof layer in the process of each coal seam directly pushing through the collapse column, the risk of water inrush and the prevention are analyzed.The results show that the exposed geological isomer is characterized by weak water-rich collapse column.Under the influence of the mining of the previous coal seam and the activation of the collapse column, the subsequent coal seam is in the low stress area before mining, which increases the floor failure and causes the activation of the collapse column more easily during mining.Coal 5# and 4# can be directly pushed through the collapse column, and coal pillar of sufficient width should be left for coal 1# to prevent the collapse column from activating water inrush.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yanhui Du ◽  
Weitao Liu ◽  
Xiangxi Meng ◽  
Lifu Pang ◽  
Mengke Han

Hidden faults in deep coal seam floor threaten the exploitation of coal resources. Under the influence of mining and water confined in the floor, the cemented filler in the hidden fault will be eroded by water flow, in order to investigate the fracture characteristics and water inrush risk of hidden faults in floors above confined aquifer. Using the 27305 working face as geological background, the influence of the seepage scouring filler on the mechanism of water inrush from hidden faults was assessed by developing a stress-seepage coupling model and employing the finite difference method to simulate the seepage process of hidden faults under the combined action of high ground stress and high confined water. The evolution of seepage, shear stress, and plastic zone was also assessed. The influence of the hydraulic pressure of the aquifer and the thickness of a waterproof rock floor on the formation of the water inrush pathway was analyzed. Results indicate that (1) under the influence of mining, the hidden fault experienced the change process of stress stability, stress concentration, and stress release. The shear stress increases first and then decreases. The compressive stress decreases gradually due to stress release. (2) Water inrush disaster will not occur immediately when the working face is above the hidden fault. The delayed water inrush occurs in the mined-out area when the working face advances to 160 m, the floor failure zone is connected with the hidden fault failure zone, and the delayed water inrush channel is formed. (3) With the mining advances, the water pressure of aquifer is the same. The larger-angle fault leads to the thinner thickness of floor aquifer. The greater the influence of hidden fault on coal seam mining, the higher the danger of water inrush.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Bingyou Jiang ◽  
Bo Ren ◽  
Mingqing Su ◽  
Bao Wang ◽  
Xin Li ◽  
...  

In order to scientifically and reasonably assess the risk of water inrush from the coal seam floor, considering the influence of natural environmental factors such as hydrogeology, mining, and human intervention, the PSR model of ecosystem health evaluation was introduced, and the risk evaluation indicator system of water inrush from the coal seam floor was established. In order to solve the randomness and fuzziness of water inrush event evaluation, the evaluation model is constructed based on extension cloud theory and is applied in the 12123 working face of Pan Er coal mine of Huainan Mining Group. The application results show that the evaluation results are basically consistent with the actual situation, which shows that the model can be used in the actual evaluation work and is scientific.


Sign in / Sign up

Export Citation Format

Share Document