scholarly journals Pressure loss reduction of pipe elements

2020 ◽  
Vol 15 (2) ◽  
pp. 489-493
Author(s):  
Gábor Gönczi

Abstract A theoretical research was conducted from 2016 to 2018 which aimed to reduce the head loss of pipe networks in the pump stations. The results were promising and predicted an average head loss reduction by 30%. Afterwards, physical experiments were carried out to test the effectiveness of the new pipe designs. Two new prototype pipe sections were installed into one of our pump stations. The experiment was successful as two unique pipe sections installed in the discharge pipe reduced the head loss of the pump station by 25–26%. According to these results, we can set a target value of 30% head loss reduction at full pump station pipe reconstruction.

2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Qiang Liu ◽  
Shan Zhong ◽  
Lin Li

Abstract In this paper, we investigated the effects of herringbone riblets, a type of bio-inspired micro-scale surface patterns, on pressure losses and flow turning angles in a linear cascade over a range of low Reynolds numbers from 0.50 × 105 to 1.50 × 105 and at three different incidence angles. Our experiments showed that despite their micro-scale size, herringbone riblets produced a significant reduction in pressure loss and a substantial increase in flow turning angle except at the low end of the Reynolds numbers tested. In comparison to the baseline case without riblets, the highest reduction in the zone-averaged pressure loss coefficient behind one flow passage was 36.4% which was accompanied by a 4.1 deg increase in the averaged turning angle. The loss reduction was caused by a decrease in γmax at α = −1 deg, a narrower wake zone at α = 9 deg and a mixture of both at α = 4 deg due to the suppression of flow separation on the blade suction surface. It was also noted that such a significant improvement was always accompanied by the appearance of a serrated wake structure in the contours of pressure loss coefficient in which the region with a higher loss reduction occurring directly behind the divergent region of herringbone riblets. The observed improvement in cascade performance was attributed to the secondary flow motion produced by herringbone riblets which energizes the boundary layer. Overall, this work has produced convincing experimental evidence that herringbone riblets could be potentially used as passive flow control devices for reducing flow separation in compressors at low Reynolds numbers.


Author(s):  
Kazuya Tatsumi ◽  
Shintaro Matsuzaki ◽  
Kazuyoshi Nakabe

The effects of the attack-angle of the fin notch array against the main flow and size of the clearance at the fin-tip on the heat transfer and pressure loss performances of a channel with cut-fins (parallel fins with square notches) mounted on the bottom wall were evaluated in the present article. Three-dimensional numerical simulations, PIV measurements and heat transfer experiments employing a modified single-blow method were conducted to discuss these characteristics. Larger pressure loss reduction was obtained by the cut-fins case compared with the plain-fins case (parallel fins without notches) under smaller clearance conditions, while smaller thermal resistance was achieved with larger clearance. A maximum peak, therefore, appeared in the overall performance in relation with the clearance size. Larger heat transfer coefficients were obtained with smaller attack-angles of the notch array in both experimental and numerical results, particularly under larger Reynolds number conditions. This was due to the spanwise flow generated in the area adjacent to the notch, by which renewal of the thermal boundary layer was effectively produced at the trailing edge of the notch.


2018 ◽  
Vol 10 ◽  
pp. 01001
Author(s):  
Aliaksandr Basareuski

One of the major parameters of a hydraulic machine is its energy intensity, i.e. its power/output ratio. This article presents the results of theoretical studies of the effects of additional head loss of transporting fluid through helically coiled flexible pipe on specific energy consumption of fertigation machinery and pipeline transport. Computational methods have been used to determine that pressure loss will be 15-20% higher on the average than the loss at a straight section, depending on the average radius of coil helix/design pipe diameter ratio. Correlations have been obtained that allow for justification of major mobile fertilizer system parameters based on the need to minimize pressure loss.


Author(s):  
Ireneusz Nowogoński ◽  
Ewa Ogiołda ◽  
Marlena Kubiszyn

The paper presents the problem of working conditions in gravitationalpressure systems simulation. The practical example takes into account the dynamical analysis of a system equipped with 10 pump stations with different functions. Both local press stations, local stations for shallowing network and transit pumping stations between the towns were used. The model allowed to optimize the active volume of the pump station tanks, the selection of pumps, including the frequency of power on and the time of holding the sewage.


2013 ◽  
Vol 3 (4) ◽  
pp. 49-53 ◽  
Author(s):  
B. U URIShEV ◽  
M. M MUKhAMMADIEV ◽  
F. NOSIROV ◽  
S. R ZhURAEV

The structure of a new water intake amelioration pump station that can prevent a forebays silting is described. The article reports on the designed structures laboratory research results.


2012 ◽  
Vol 2 (1) ◽  
pp. 59-62
Author(s):  
V. V ShMIGOL' ◽  
M. D ChERNOSVITOV

Four variants of determining calculative costs for designing pump stations are compared. It is found that at designing one should use the operational norm of water consumption got on the bases of the existing operating block pump station.


Sign in / Sign up

Export Citation Format

Share Document