New Developments in Landfill Leachate Treatment

1985 ◽  
Vol 20 (3) ◽  
pp. 1-9
Author(s):  
J.G. Henry

Abstract Treatment of Leachate from sanitary landfills has been found to be a much different and more complex problem than the treatment of municipal wastewater. Greater variability in the characteristics and quantities, of the waste, isolation of the landfill site and the need for simple treatment methods are three reasons why leachate treatment needs special consideration. Typical characteristics of this waste are high strength, a low BOD/COD ratio, limited phosphorus and excessive ammonia nitrogen, along with various toxic contaminants. A number of aerobic and anaerobic methods used to treat leachate are described in this paper and the advantages and shortcomings of each are noted. Supplementary processes including nitrification, nitrogen removal, recirculation and land spraying are also discussed. From experience with these earlier systems it appears that, in the future, more consideration should be given to: equalization of leachate flow, anaerobic rather than aerobic processes, nitrification of the leachate and utilization of landfill gas. Land spraying and recirculation of leachate also warrant wider application.

2008 ◽  
Vol 3 (3) ◽  
Author(s):  
O. González-Barceló ◽  
S. González-Martínez

Biological aerated filtration is a viable option for small municipal wastewater treatment plants. A low cost filter media was obtained by triturating volcanic rock. An apparent porosity of 46 % and a specific surface area of 395 m2/m3·d were obtained once the filter was packed by using a grain size of 8.2 mm. The performance of the system, operated as a biological filter, was evaluated under an average organic load of 2.6±0.4 kgCODT/m3·d (6.7±1.1 gCODT/m2·d) without primary and secondary settling. The average CODT decreased from 220 mg/l in the influent to 88 mg/l in the effluent and the CODD was decreased from 148 mg/l in the influent to 50 mg/l in the effluent. The filter media, in combination with the biofilm, allowed a 75 % TSS removal. The ammonia nitrogen decreased from 51 mg/l in the influent to 33 mg/l in the effluent. The maximum flux coefficients of 9.3gCODdissolved/m2·d and 2.9gNH4-N/m2·d at the biofilm surface were used to simulate, with the Michaelis-Menten model, the profiles of dissolved COD, ammonium and nitrates through the aerated filter. It was possible to conclude that the backwashing procedure removed the excess biomass and was responsible for a homogeneous distribution of heterotrophic and autotrophic microorganisms along the filter depth.


2000 ◽  
Vol 42 (12) ◽  
pp. 49-60 ◽  
Author(s):  
P.L. McCarty

Of recent concern is the removal of toxic compounds in wastewaters, soils, and groundwater to concentrations in the low microgram per litre level or less. Threshold limits to bioremediation exist and must be considered in biological treatment schemes to achieve such limits. These limits may be related to reaction kinetics or thermodynamics. Techniques for removing compounds below threshold levels exist that rely on appropriate approaches such as plug flow treatment. Novel biological methods exist for removal of refractory contaminants to low levels. Examples are provided for removal of trace levels of chlorinated solvents, such as tetrachloroethene (PCE) and trichloroethene (TCE), that employ dehalorespiration under anaerobic conditions or cometabolism under aerobic conditions. These approaches are currently being used in engineered systems or through natural attenuation for remediation of soils and groundwater. Successful results offer insights for similar removals of trace chemicals in both aerobic and anaerobic biological systems for treatment of wastewaters and sanitary landfills.


2003 ◽  
Vol 48 (1) ◽  
pp. 191-198 ◽  
Author(s):  
T.K. Chen ◽  
C.H. Ni ◽  
J.N. Chen ◽  
J. Lin

The membrane bioreactor (MBR) system has become more and more attractive in the field of wastewater treatment. It is particularly attractive in situations where long solids retention times are required, such as nitrifying bacteria, and physical retention critical to achieving more efficiency for biological degradation of pollutant. Although it is a new technology, the MBR process has been applied for industrial wastewater treatment for only the past decade. The opto-electronic industry, developed very fast over the past decade in the world, is high technology manufacturing. The treatment of the opto-electronic industrial wastewater containing a significant quantity of organic nitrogen compounds with a ratio over 95% in organic nitrogen (Org-N) to total nitrogen (T-N) is very difficult to meet the discharge limits. This research is mainly to discuss the treatment capacity of high-strength organic nitrogen wastewater, and to investigate the capabilities of the MBR process. A 5 m3/day capacity of MBR pilot plant consisted of anoxic, aerobic and membrane bioreactor was installed for evaluation. The operation was continued for 150 days. Over the whole experimental period, a satisfactory organic removal performance was achieved. The COD could be removed with an average of over 94.5%. For TOC and BOD5 items, the average removal efficiencies were 96.3 and 97.6%, respectively. The nitrification and denitrification was also successfully achieved. Furthermore, the effluent did not contain any suspended solids. Only a small concentration of ammonia nitrogen was found in the effluent. The stable effluent quality and satisfactory removal performance mentioned above were ensured by the efficient interception performance of the membrane device incorporated within the biological reactor. The MBR system shows promise as a means of treating very high organic nitrogen wastewater without dilution. The effluent of TKN, NOx-N and COD can fall below 20 mg/L, 30 mg/L and 50 mg/L.


1994 ◽  
Vol 30 (12) ◽  
pp. 297-306 ◽  
Author(s):  
Joseph Akunna ◽  
Claude Bizeau ◽  
René Moletta ◽  
Nicolas Bernet ◽  
Alain Héduit

Two laboratory upflow aerobic and anaerobic filters fed with synthetic wastewaters were used to study firstly the effects of aeration rate on the nitrification of anaerobically pre-treated effluents and secondly the effects of recycle-to-influent ratios on methane production rate, denitrification and nitrification performances of a combined aerobic and anaerobic wastewater treatment process. Nitrification of anaerobically pre-treated effluent was accompanied by aerobic post-treatment for residual COD removal. A comparison of nitrification performances using autotrophic medium and anaerobically pre-treated effluents (containing 1203 mg COD 1−1) with the same ammonia nitrogen concentration of about 300 mg NH4-N 1−1 showed that 3% of added ammonia nitrogen was assimilated by autotrophic nitrifiers during nitrification of the autotrophic medium while up to 30% was assimilated by both nitrifiers and heterotrophs during organic carbon removal and nitrification of anaerobically pre-treated effluent. Furthermore, it was suspected that significant nitrogen loss through denitrification occured in the aerobic filter especially at low aeration rates. In the study of the combined aerobic-anaerobic system, maximum ammonia nitrogen removal of 70% through denitrification was obtained at recycle-to-influent ratios of 4 and 5. COD removal efficiency in the anaerobic filter decreased from 77 to 60% for recycle-to-influent ratios of zero to 5. Overall COD removal efficiency of the entire system was constant at about 99% due to heterotrophic COD removal in the aerobic filter.


2011 ◽  
Vol 55-57 ◽  
pp. 789-795
Author(s):  
Xiu Ju Duan ◽  
Qiang He ◽  
Ya Li Liu

This thesis put forward the treatment concept of “without Biomass Retention Sequential Batch Intensified Pretreatment (WSIP)” in leachate treatment, for sake of improving performance of nitrogen removal, optimizing excess water’s nutritional ratio and benefitting the follow-up aerobic biological treatment. Based on orthogonal experiment of WSIP Reactor’s leachate treatment performance, Conclusions can be drew: the removal performance of ammonia nitrogen and TN is higher of WSIP, in which short-cut nitrification and denitrification can be realized; HRT, DO and sequential period are remarkable factors of ammonia removal performance, TN removal performance and realization of short-cut nitrification and denitrification; In normal temperature, the most perfect functional parameter of WSIP Reactor is: HRT=4d, DO=0.75mg/L and sequential period is 6h.


2021 ◽  
Author(s):  
Nan Jiang ◽  
Li Huang ◽  
Manhong Huang ◽  
Teng Cai ◽  
Jialing Song ◽  
...  

Abstract In this study, thin-film composite with embedded polyester screen, cellulose triacetate with a cast nonwoven and cellulose triacetate with embedded polyester screen (CTA-ES) were examined as the intermediate membranes in osmotic microbial fuel cells (OsMFCs). The reactors were fed with actual landfill leachate and the performance was studied in two operation modes: active layer facing draw solution and active layer facing feed solution (AL-FS). The OsMFC with CTA-ES exhibited the best energy generation (maximum power density: 0.44 W m-2) and pollutant removal efficiency (ammonia nitrogen: 70.12 ± 0.28%, total nitrogen: 74.04 ± 0.33%) in the AL-FS mode, which could be ascribed to the lowest internal resistance (236.75 ohm) and highest microbial richness. Pseudomonas was the highest proportion of microbial in OsMFCs. The results of this study has demonstrated the potential of OsMFCs for landfill leachate treatment.


2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Zhen-dong Zhao ◽  
Qiang Lin ◽  
Yang Zhou ◽  
Yu-hong Feng ◽  
Qi-mei Huang ◽  
...  

The development of efficient and low-cost wastewater treatment processes remains an important challenge. A microaerobic up-flow oxidation ditch (UOD) with micro-electrolysis by waterfall aeration was designed for treating real municipal wastewater. The effects of influential factors such as up-flow rate, waterfall height, reflux ratio, number of stages and iron dosing on pollutant removal were fully investigated, and the optimum conditions were obtained. The elimination efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH 4 + -N), total nitrogen (TN) and total phosphorus (TP) reached up to 84.33 ± 2.48%, 99.91 ± 0.09%, 93.63 ± 0.60% and 89.27 ± 1.40%, respectively, while the effluent concentrations of COD, NH 4 + -N, TN and TP were 20.67 ± 2.85, 0.02 ± 0.02, 1.39 ± 0.09 and 0.27 ± 0.02 mg l −1 , respectively. Phosphorous removal was achieved by iron–carbon micro-electrolysis to form an insoluble ferric phosphate precipitate. The microbial community structure indicated that carbon and nitrogen were removed via multiple mechanisms, possibly including nitrification, partial nitrification, denitrification and anammox in the UOD.


2010 ◽  
Vol 61 (3) ◽  
pp. 789-796 ◽  
Author(s):  
S. González-Martínez ◽  
S. Piña-Mondragón ◽  
Ó. González-Barceló

The main objective of this research was to determine the feasibility to treat the azo dye direct blue 2 together with municipal wastewater in a biological aerated filter (BAF) using lava stones as support of the microorganisms and under combined anaerobic/aerobic conditions. A 3 m high pilot biological aerated filter was fed with municipal wastewater and, after several weeks, the azo dye direct blue 2 was added to the wastewater to reach a final concentration of 50 mg/L (34 mgCOD/L). Under continuous operation, two strategies were tested: Alternating aeration (12 h anaerobic and 12 h aerobic) and combined aeration (the lower part of the filter anaerobic and the upper part aerobic). The results indicate that municipal wastewater acted as a good electron donor resulting in satisfactory COD and dye removal rates. Better dye removal (61%) was obtained with combined aeration than with alternating aeration (45%). After beginning the azo dye addition, the COD removal rates decreased from 87 to 81% for both alternating and combined aeration procedures. The average ammonia nitrogen removal, without the addition of the dye, was 73% and increased to 90% shortly after beginning the dye addition, then it decreased to 81% during the combined aeration period. Excellent nitrification was observed in the upper aerobic part of the filter. For the combined aeration phase, the conditions change from anaerobic to aerobic does not seem to affect the behavior of the COD and TSS curves.


Sign in / Sign up

Export Citation Format

Share Document