Coping with Water Quality Problems due to Hypolimnetic Anoxia in Central Ontario Lakes

1997 ◽  
Vol 32 (2) ◽  
pp. 391-405 ◽  
Author(s):  
Gertrud Nürnberg

Abstract Many lakes experience oxygen depletion in their hypolimnia during summer or winter stratification. This study investigates the remedial actions that are available to combat the harmful effects of hypolimnetic anoxia in three types of Central Ontario lakes with different trophic states. In more eutrophic lakes, e.g., Lake Wilcox, southern Ontario, much phosphorus accumulates in the hypolimnion during anoxia and represents ca. 60% of the annual P budget. To diminish the detrimental effects of such a high internal phosphorus load, withdrawal of the hypolimnetic waters, together with damming of the surface water outflow, has been suggested. In oligo- to mesotrophic Chesley Lake, on the Niagara Escarpment, phosphorus accumulation in the hypolimnion is only slight and metals with a binding capacity for phosphorus are available. Here a hypolimnetic oxygenation has been suggested to alleviate the stress on fish and also to prevent further P release from the sediments. Lakes in the District of Muskoka are softwater lakes because of their location on the Canadian Shield. Although the geochemistry of the catchment typically renders these lakes nutrient poor and oligotrophic, long-term development on their shores has led to phosphorus accumulation in the sediments that is released under anoxic conditions in some lakes. To prevent the deterioration of the water quality in these lakes, water quality models to manage and control future development in its watersheds, as those of the district municipality, should include anoxia and internal P recycling in a quantitative manner.

2021 ◽  
Author(s):  
Melanie Münch ◽  
Rianne van Kaam ◽  
Karel As ◽  
Stefan Peiffer ◽  
Gerard ter Heerdt ◽  
...  

<p>The decline of surface water quality due to excess phosphorus (P) input is a global problem of increasing urgency. Finding sustainable measures to restore the surface water quality of eutrophic lakes with respect to P, other than by decreasing P inputs, remains a challenge. The addition of iron (Fe) salts has been shown to be effective in removing dissolved phosphate from the water column of eutrophic lakes. However, the resulting changes in biogeochemical processes in sediments as well as the long-term effects of Fe additions on P dynamics in both sediments and the water column are not well understood.</p><p>In this study, we assess the impact of past Fe additions on the sediment P biogeochemistry of Lake Terra Nova, a well-mixed shallow peat lake in the Netherlands. The Fe-treatment in 2010 efficiently reduced P release from the sediments to the surface waters for 6 years. Since then, the internal sediment P source in the lake has been increasing again with a growing trend over the years.</p><p>In 2020, we sampled sediments at three locations in Terra Nova, of which one received two times more Fe during treatment than the other two. Sediment cores from all sites were sectioned under oxygen-free conditions. Both the porewaters and sediments were analysed for their chemical composition, with sequential extractions providing insight into the sediment forms of P and Fe. Additional sediment cores were incubated under oxic and anoxic conditions and the respective fluxes of P and Fe across the sediment water interface were measured.</p><p>The results suggest that Fe and P dynamics in the lake sediments are strongly coupled. We also find that the P dynamics are sensitive to the amount of Fe supplied, even though enhanced burial of P in the sediment was not detected. The results of the sequential extraction procedure for P, which distinguishes P associated with humic acids and Fe oxides, as well as reduced flux of Fe(II) across the sediment water interface in the anoxic incubations, suggest a major role of organic matter in the interaction of Fe and P in these sediments.</p><p>Further research will include investigations of the role of organic matter and sulphur in determining the success of Fe-treatment in sequestering P in lake sediments. Based on these data in combination with reactive transport modelling we aim to constrain conditions for successful lake restoration through Fe addition.</p>


2002 ◽  
Vol 2 ◽  
pp. 885-891 ◽  
Author(s):  
Y. Amano ◽  
K. Taki ◽  
K. Murakami ◽  
T. Ishii ◽  
H. Matsushima

The remediation method — namely, a hybrid system combined with DAF and CRM — is studied in this paper for the size reduction of aqua-ecological circulation and for the elution control in lakes. Results show that two effects on water quality purification, the sediment washout effect and the elution control effect, can be induced by this system, and the biota inhabiting the lake is therefore shifted into an oligotrophic aspect, from blue algae to green algae and/or diatoms.


1980 ◽  
Vol 37 (2) ◽  
pp. 185-194 ◽  
Author(s):  
Jack A. Mathias ◽  
Jan Barica

Winter oxygen depletion rates from four sets of Canadian lakes (prairie, southeastern Ontario, Arctic, and Experimental Lakes Area) differing in morphometry and trophic state, were analyzed. An inverse relationship was found between oxygen depletion rate and mean depth. The effect of lake trophic status on oxygen depletion rate was demonstrable after the influence of basin morphometry was removed by regression of oxygen depletion rate against the sediment area: lake volume ratio. The sediments of eutrophic lakes consumed oxygen about 3 times faster (0.23 g∙m−2∙d−1) than those of oligotrophic lakes (0.08 g∙m−2∙d−1), but water column respiration was about the same (0.01 g∙m−3∙d−1) for both groups of lakes. Data from prairie lakes showed that the winter oxygen consumption was limited by oxygen supply below an average whole-lake oxygen concentration of 3.8 mg∙L−1. The rate of eddy diffusion near the sediments in ice-covered prairie lakes was 3.72 ± 1.41 × 10−3 cm2∙s−1. Implications for lake management during the winter are discussed.Key words: oxygen, depletion, respiration, lakes, ice-covered, winter, sediments, model, consumption


2014 ◽  
Vol 70 ◽  
pp. 1-10 ◽  
Author(s):  
Maciej Skłodowski ◽  
Edyta Kiedrzyńska ◽  
Marcin Kiedrzyński ◽  
Magdalena Urbaniak ◽  
Katarzyna M. Zielińska ◽  
...  

2016 ◽  
Vol 542 ◽  
pp. 281-291 ◽  
Author(s):  
Xiaoling Zhang ◽  
Rui Zou ◽  
Yilin Wang ◽  
Yong Liu ◽  
Lei Zhao ◽  
...  

2020 ◽  
Author(s):  
David O'Connell ◽  
Nienke Ansems ◽  
Ravi Kukkadapu ◽  
Deb jaisi ◽  
Diane orihel ◽  
...  

<p>Stringent environmental policies in many countries have played an extensive role in reducing external phosphorus (P) loading to lakes from agriculture and urban sources. Nonetheless, such reductions in external P loading to many eutrophic lakes have not resulted in the expected concurrent restitution of water quality. Such a delayed recovery of many lakes is blamed both on internal loading of legacy P from lake sediments (i.e., benthic recycling) and the amplification of such internal P loading processes due to the reduction in external P concentrations. Hence, a detailed process understanding of P cycling at the sediment-water interface (SWI) is critical to understand nutrient loading, water quality and associated effects on lake water quality. Much of the work on sedimentary P cycling has traditionally focused on inorganic processes of soluble phosphate, particularly sorption to metals (Fe, Mn, Al) oxyhydroxides and clays. However, there is increasing recognition that organic forms of P, along with interactions between phosphate and humic substances, also play a decisive role in controlling P fluxes between sediments and the overlying water column.</p><p>This study focused on gaining further understanding of the such processes through the collection of sediment cores from the oxygenated epilimnion and the mostly anoxic hypolimnion of Lake 227 of the Experimental Lakes Area (ELA) in Ontario, Canada. Since 1969, this unique experimental lake has been fertilized with phosphorus (P), which triggered a relatively rapid trophic transition from oligotrophic to eutrophic conditions. The cores contain a chronological record of changes in sediment burial rates and sediment P speciation across this trophic transition.</p><p>Interpretation of such changes was undertaken by coupling results of chemical extractions with <sup>210</sup>Pb sediment dating, <sup>31</sup>P NMR, XANES and Mössbauer spectroscopy. The major sedimentary P fraction prior to lake enrichment starting in 1969 was organic P (P<sub>Org</sub>). Fertilization of the lake in 1969 coincided with significant increases in the accumulation rate of sediment, total organic carbon (TOC) and total P (TP), in addition to a marked relative contribution of NaHCO<sub>3</sub> extractable P. The combined proportion of P<sub>Hum</sub> and P<sub>Org</sub> desposited since artificial fertilization in 1969 account for ≥70% of total P burial in the sediments. The anticipated composition of such P<sub>Hum</sub> fractions was hypothesized to be ternary phosphate (PO<sub>4</sub>) complexes with humic substances. In support of this, the strong linear correlation between P and iron (Fe) extracted by NaHCO<sub>3</sub> implies a close association of the two elements in the humic fraction. Furthermore, XANES and Mössbauer spectra indicate that most Fe in the post-1969 sediments is conserved in the +3 oxidation state, which may be ascribed to the stabilization of reducible Fe by organic matter, partially due to the formation of ternary PO<sub>4</sub>-Fe(III)-humic complexes. Our findings suggest the artificial eutrophication of Lake 227 resulted in the accelerated accumulation of a large sedimentary reservoir of reactive sediment P that may drive continued internal P loading to the water column following the cessation of artificial fertilization. </p><p><strong> </strong></p>


2001 ◽  
Vol 1 ◽  
pp. 427-442 ◽  
Author(s):  
Martin Sondergaard ◽  
Peder Jens Jensen ◽  
Erik Jeppesen

This paper gives a general overview of the nature and important mechanisms behind internal loading of phosphorus (P), which is a phenomenon appearing frequently in shallow, eutrophic lakes upon a reduction of the external loading. Lake water quality is therefore not improved as expected. In particular summer concentrations rise and P retention may be negative during most of the summer. The P release originates from a pool accumulated in the sediment when the external loading was high. In most lake sediments, P bound to redox-sensitive iron compounds or P fixed in more or less labile organic forms constitute major fractions forms that are potentially mobile and eventually may be released to the lake water. The duration of the recovery period following P loading reduction depends on the loading history, but it may last for decades in lakes with a high sediment P accumulation. During the phase of recovery, both the duration and net P release rates from the sediment seem to decline progressively. Internal P loading is highly influenced by the biological structure as illustrated by lakes shifting from the turbid to the clearwater state as a result of, for example, biomanipulation. In these lakes P concentrations may be reduced to 50% of the pre-biomanipulation level and the period with negative retention during summer can thus be reduced considerably. The duration of internal loading can be reduced significantly by different restoration methods such as dredging to remove accumulated P or addition of iron or alum to elevate the sorption capacity of sediments. However, an important prerequisite for achieving long-term benefits to water quality is a sufficient reduction of the external P loading.


2009 ◽  
Vol 4 (3) ◽  
Author(s):  
D. Kowalski

The paper deals with the problem of deterioration of water quality in water supply networks. On the basis of relevant literature and his own research, the author points to a common occurrence of this phenomenon. The case study of a 3.5 km town network presented in the paper confirms the situation. The field tests of the water quality in that network detected a high concentration of iron and presence of lead contamination from PVC pipes. One of the methods of counteracting water quality deterioration used by water companies is flushing, accomplished as water outflow by fire hydrants. Unfortunately this method has several disadvantages, such as substantial water loss and the resulting costs. These factors dictate limitation of the flushing frequency as well of the duration of the process. In addition, the house pipes are not flushed at all. As a conceptual solution to this problem the author proposes, is the implementation of mobile flushing stations. The closed cycle applied during the flushing process can essentially reduce the water loss. The proposed solution has been tested by computer simulations. A simplified cost estimation of the implementation of the solution has also been presented.


Hydrobiologia ◽  
2009 ◽  
Vol 625 (1) ◽  
pp. 157-172 ◽  
Author(s):  
Lone Liboriussen ◽  
Martin Søndergaard ◽  
Erik Jeppesen ◽  
Inge Thorsgaard ◽  
Simon Grünfeld ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document