Sedimentary phosphorus speciation dynamics following artificial eutrophication of Lake 227, Experimental Lakes Area, Ontario, Canada

Author(s):  
David O'Connell ◽  
Nienke Ansems ◽  
Ravi Kukkadapu ◽  
Deb jaisi ◽  
Diane orihel ◽  
...  

<p>Stringent environmental policies in many countries have played an extensive role in reducing external phosphorus (P) loading to lakes from agriculture and urban sources. Nonetheless, such reductions in external P loading to many eutrophic lakes have not resulted in the expected concurrent restitution of water quality. Such a delayed recovery of many lakes is blamed both on internal loading of legacy P from lake sediments (i.e., benthic recycling) and the amplification of such internal P loading processes due to the reduction in external P concentrations. Hence, a detailed process understanding of P cycling at the sediment-water interface (SWI) is critical to understand nutrient loading, water quality and associated effects on lake water quality. Much of the work on sedimentary P cycling has traditionally focused on inorganic processes of soluble phosphate, particularly sorption to metals (Fe, Mn, Al) oxyhydroxides and clays. However, there is increasing recognition that organic forms of P, along with interactions between phosphate and humic substances, also play a decisive role in controlling P fluxes between sediments and the overlying water column.</p><p>This study focused on gaining further understanding of the such processes through the collection of sediment cores from the oxygenated epilimnion and the mostly anoxic hypolimnion of Lake 227 of the Experimental Lakes Area (ELA) in Ontario, Canada. Since 1969, this unique experimental lake has been fertilized with phosphorus (P), which triggered a relatively rapid trophic transition from oligotrophic to eutrophic conditions. The cores contain a chronological record of changes in sediment burial rates and sediment P speciation across this trophic transition.</p><p>Interpretation of such changes was undertaken by coupling results of chemical extractions with <sup>210</sup>Pb sediment dating, <sup>31</sup>P NMR, XANES and Mössbauer spectroscopy. The major sedimentary P fraction prior to lake enrichment starting in 1969 was organic P (P<sub>Org</sub>). Fertilization of the lake in 1969 coincided with significant increases in the accumulation rate of sediment, total organic carbon (TOC) and total P (TP), in addition to a marked relative contribution of NaHCO<sub>3</sub> extractable P. The combined proportion of P<sub>Hum</sub> and P<sub>Org</sub> desposited since artificial fertilization in 1969 account for ≥70% of total P burial in the sediments. The anticipated composition of such P<sub>Hum</sub> fractions was hypothesized to be ternary phosphate (PO<sub>4</sub>) complexes with humic substances. In support of this, the strong linear correlation between P and iron (Fe) extracted by NaHCO<sub>3</sub> implies a close association of the two elements in the humic fraction. Furthermore, XANES and Mössbauer spectra indicate that most Fe in the post-1969 sediments is conserved in the +3 oxidation state, which may be ascribed to the stabilization of reducible Fe by organic matter, partially due to the formation of ternary PO<sub>4</sub>-Fe(III)-humic complexes. Our findings suggest the artificial eutrophication of Lake 227 resulted in the accelerated accumulation of a large sedimentary reservoir of reactive sediment P that may drive continued internal P loading to the water column following the cessation of artificial fertilization. </p><p><strong> </strong></p>

2021 ◽  
Author(s):  
Melanie Münch ◽  
Rianne van Kaam ◽  
Karel As ◽  
Stefan Peiffer ◽  
Gerard ter Heerdt ◽  
...  

<p>The decline of surface water quality due to excess phosphorus (P) input is a global problem of increasing urgency. Finding sustainable measures to restore the surface water quality of eutrophic lakes with respect to P, other than by decreasing P inputs, remains a challenge. The addition of iron (Fe) salts has been shown to be effective in removing dissolved phosphate from the water column of eutrophic lakes. However, the resulting changes in biogeochemical processes in sediments as well as the long-term effects of Fe additions on P dynamics in both sediments and the water column are not well understood.</p><p>In this study, we assess the impact of past Fe additions on the sediment P biogeochemistry of Lake Terra Nova, a well-mixed shallow peat lake in the Netherlands. The Fe-treatment in 2010 efficiently reduced P release from the sediments to the surface waters for 6 years. Since then, the internal sediment P source in the lake has been increasing again with a growing trend over the years.</p><p>In 2020, we sampled sediments at three locations in Terra Nova, of which one received two times more Fe during treatment than the other two. Sediment cores from all sites were sectioned under oxygen-free conditions. Both the porewaters and sediments were analysed for their chemical composition, with sequential extractions providing insight into the sediment forms of P and Fe. Additional sediment cores were incubated under oxic and anoxic conditions and the respective fluxes of P and Fe across the sediment water interface were measured.</p><p>The results suggest that Fe and P dynamics in the lake sediments are strongly coupled. We also find that the P dynamics are sensitive to the amount of Fe supplied, even though enhanced burial of P in the sediment was not detected. The results of the sequential extraction procedure for P, which distinguishes P associated with humic acids and Fe oxides, as well as reduced flux of Fe(II) across the sediment water interface in the anoxic incubations, suggest a major role of organic matter in the interaction of Fe and P in these sediments.</p><p>Further research will include investigations of the role of organic matter and sulphur in determining the success of Fe-treatment in sequestering P in lake sediments. Based on these data in combination with reactive transport modelling we aim to constrain conditions for successful lake restoration through Fe addition.</p>


2002 ◽  
Vol 2 ◽  
pp. 885-891 ◽  
Author(s):  
Y. Amano ◽  
K. Taki ◽  
K. Murakami ◽  
T. Ishii ◽  
H. Matsushima

The remediation method — namely, a hybrid system combined with DAF and CRM — is studied in this paper for the size reduction of aqua-ecological circulation and for the elution control in lakes. Results show that two effects on water quality purification, the sediment washout effect and the elution control effect, can be induced by this system, and the biota inhabiting the lake is therefore shifted into an oligotrophic aspect, from blue algae to green algae and/or diatoms.


1999 ◽  
Vol 56 (9) ◽  
pp. 1679-1686 ◽  
Author(s):  
Frank M Wilhelm ◽  
Jeff J Hudson ◽  
David W Schindler

We estimated the net P transport by Gammarus lacustris from the benthic to pelagic regions of a fishless alpine lake and compared it with P regeneration by the entire plankton community. Gammarus lacustris released between 5.2 and 18.1 ng P·L-1·h-1 (adults only and adults plus immatures, respectively) in the pelagic region during nighttime vertical migration. Additional P released into and removed from the water column due to predation on zooplankton was estimated at 1.87 and 2.3 ng P·L-1·h-1, respectively. The net daily regeneration of 52.2-181.4 ng P·L-1·day-1 by the G. lacustris population represented 9.5-32.9% of the total P regenerated by the planktonic community. The majority of the P released by G. lacustris represents "new" P to the pelagic zone because it originated in sediments. We conclude that G. lacustris can represent an important link in benthic-pelagic coupling in oligotrophic mountain lakes.


1994 ◽  
Vol 51 (12) ◽  
pp. 2739-2755 ◽  
Author(s):  
P. Campbell

A comparative mass-balance approach is used to describe and quantify phosphorus (P) cycles during the open-water season in two unmanipulated Experimental Lakes Area (ELA) lakes. A bimodal cycle generally prevailed, in which water-column total phosphorus (TP = total dissolved P plus sestonic particulate P) peaked just after ice-out and again late in the summer. Changes in mass of water-column TP were often much larger than corresponding net external inputs. Shifts of P to and from either zooplankton or fish in the water column do not explain the P residuals. Rather, the bottom sediments must have been adding P to the water column. Short-term regeneration of P from the bottom sediments also probably occurs in artificially eutrophied ELA lakes. The mechanism of regeneration is probably biological. Other aspects of P cycling and P stoichiometry are discussed, particularly in relation to nutrient control of population structure and the function of primary and secondary producers.


Author(s):  
Jennifer Tank ◽  
Alexander Reisinger

Nutrient pollution of aquatic ecosystems is a growing concern as the influence of human activities continues to increase on the landscape. Headwater streams have long been shown to process nutrients via the biofilm community growing on the bottom of streams. The growth and activity of these biofilms is often limited by the availability of nitrogen (N), phosphorus (P), or co-limited by both N and P. Although small stream nutrient dynamics are relatively well understood, comparatively little is known about larger, non-wadeable rivers. Biofilms on the river bottom are likely still nutrient limited, but there becomes an increased potential for light limitation as rivers increase in depth. In addition to biofilms on the bottom of rivers, free-living microbial communities suspended in the water column also occur in rivers and process nutrients - a component of nutrient processing largely ignored in streams. In summer 2013 we worked in streams and rivers of the Greater Yellowstone Area (GYA) to establish the nutrient limitation status of minimally-impacted rivers, as well as the role of the water column in processing nutrients as streams increase in size. For both the nutrient limitation and water column uptake studies, we are using the GYA sites in addition to systems from other regions of the US to establish what controls the various aspects of nutrient dynamics in rivers. Our results from the GYA, in addition to Midwest and Southwest US rivers, will provide water quality managers with new strategies for improving water quality downstream, and clarify mechanisms controlling nutrient retention in rivers.


1980 ◽  
Vol 37 (2) ◽  
pp. 185-194 ◽  
Author(s):  
Jack A. Mathias ◽  
Jan Barica

Winter oxygen depletion rates from four sets of Canadian lakes (prairie, southeastern Ontario, Arctic, and Experimental Lakes Area) differing in morphometry and trophic state, were analyzed. An inverse relationship was found between oxygen depletion rate and mean depth. The effect of lake trophic status on oxygen depletion rate was demonstrable after the influence of basin morphometry was removed by regression of oxygen depletion rate against the sediment area: lake volume ratio. The sediments of eutrophic lakes consumed oxygen about 3 times faster (0.23 g∙m−2∙d−1) than those of oligotrophic lakes (0.08 g∙m−2∙d−1), but water column respiration was about the same (0.01 g∙m−3∙d−1) for both groups of lakes. Data from prairie lakes showed that the winter oxygen consumption was limited by oxygen supply below an average whole-lake oxygen concentration of 3.8 mg∙L−1. The rate of eddy diffusion near the sediments in ice-covered prairie lakes was 3.72 ± 1.41 × 10−3 cm2∙s−1. Implications for lake management during the winter are discussed.Key words: oxygen, depletion, respiration, lakes, ice-covered, winter, sediments, model, consumption


2016 ◽  
Vol 542 ◽  
pp. 281-291 ◽  
Author(s):  
Xiaoling Zhang ◽  
Rui Zou ◽  
Yilin Wang ◽  
Yong Liu ◽  
Lei Zhao ◽  
...  

2019 ◽  
Vol 20 (2) ◽  
pp. 538-549
Author(s):  
Maoqing Duan ◽  
Xia Du ◽  
Wenqi Peng ◽  
Cuiling Jiang ◽  
Shijie Zhang

Abstract In northern China, river water originating from or flowing through forests often contains large amounts of oxygen-consuming organic substances, mainly humic substances. These substances are stable and not easily biodegradable, resulting in very high detection values of chemical oxygen demand. However, under natural conditions, the dissolved oxygen demand is not as high. Using experimental values to evaluate river water quality and the impact of human activities on water quality is thus unscientific and does not meet national development goals. In this study, the potential sources of high-concentration chemical oxygen demand in river water in two areas exposed to virtually no anthropogenic activities and strongly affected by humic substances, were analysed. The chemical oxygen demand contributed by humic substances (COD-HSs) was quantified using three methods. The results of water quality monitoring in 2017 and 2018 revealed that the chemical oxygen demand concentrations (5–44 mg/L) predominantly exceeded the standard (15 mg/L). The study results suggest that COD-HSs should be considered separately for objective evaluation and management of water quality, particularly in areas that are seriously affected by COD-HSs, to provide a scientific basis for formulating sustainable water quality management policies.


2000 ◽  
Vol 134 (3) ◽  
pp. 259-267 ◽  
Author(s):  
R. A. BIDEGAIN ◽  
M. KAEMMERER ◽  
M. GUIRESSE ◽  
M. HAFIDI ◽  
F. REY ◽  
...  

Two organic fertilizers were prepared from the same initial mixture of poplar sawdust, blood and flour either by composting in a reactor or by chemical oxidation. Both processes resulted in loss of c. 30% of the organic matter. Composting required 90 days in comparison to only a few hours with chemical oxidation. Extraction of the organic residues with 1 N KOH gave solutions containing 24·6 and 15·1 g/l of humic substances respectively. These humic solutions were applied to pot-grown Lolium multiflorum Lam. at 4 and 10 mg carbon per pot to assess the short-term uptake of macro and microelements by the plants. When the plants were short of phosphorus, the humic substances from the chemically decomposed sawdust supplied at 10 mg C per pot improved total P uptake and yield. Humic substances also increased copper and manganese uptake, and by enhancing root development, also improved nitrogen uptake and biomass yield.


2013 ◽  
Vol 726-731 ◽  
pp. 3256-3261
Author(s):  
Jia Fei Zhou ◽  
Cong Feng Wang ◽  
De Fu Liu ◽  
Jing Wen Xiang ◽  
Ping Zhao ◽  
...  

Filed hydrology and water quality data were collected near the Gezhouba Dam early December of 2012 to analyze the response of Chinese Sturgeon survival condition to water temperature, dissolved oxygen (DO), pH, transparency (SD) and bottom flow-velocity. The results showed that water temperature lag is unconspicuous. The water temperature of Gezhouba Dam Sanjiang (GDS) was lower than that of Gezhouba Dam River (GDR), and it hindered propagation of sturgeon eggs. DO decreased fast in the vertical water column of GDS, pH ranged from 7.5 to 7.71. The hydrology and water quality were suitable for the life condition of sturgeon eggs and fry, except index of bottom flow-velocity.


Sign in / Sign up

Export Citation Format

Share Document