internal p loading
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 0)

2022 ◽  
Vol 9 ◽  
Author(s):  
Wei Yu ◽  
Haiquan Yang ◽  
Jingan Chen ◽  
Peng Liao ◽  
Quan Chen ◽  
...  

Macrophyte-dominated eutrophication (MDE) lakes have attracted wide attention due to the high phosphorus (P) loading in sediments that poses a wide spread risk for P release and pollution management. However, because of the superior productivity characteristics, the role of organic P mineralization in sediments in the internal P loading of MDE lake is still under debate. This study investigated the release dynamic of P in the sediments of Lake Caohai, a MDE lake in southwest of China, using a combination of the modified Huffer sequential extraction method, 31P nuclear magnetic resonance spectroscopy (NMR), and composite diffusive gradient in thin films (DGT) technology. Results showed that the apparent P diffusion flux at the sediment-water interface was remarkably high, with a mean value of 0.37 mg m−2 d−1. The phosphate ester organophosphorus components (i.e., Mono-P and Diester-P) continuously deposited and degraded in the sediments maintained the high productivity of the lake, and the mineralization process plays a critical role in the release of internal P. Although the content of inorganic P in sediment is relatively high (accounting for approximately 60% of total P), the reductive mechanism based on P-containing iron oxide/hydroxide has a low contribution to the internal P loading, as was indicated by the low release rate of P-combination iron-manganese (Fe-Mn)/iron-aluminum (Fe-Al) (BD-P and NaOH-P) and the insignificant positive correlations between DGT-labile P and DGT-labile Fe in the sediment cores. Additionally, organic P in sediments could transfer to P-combination Fe-Al/Fe-Mn. However, in severely expropriated environments, the enrichment of P-combination Fe-Al/Fe-Mn in surface sediments inhibited the mineralization of monophosphate to some degree. Taken together, this study emphasized the impact of sediment organic P loading on the release of internal P in lake, highlighting that organic P is also the valuable objects for avoiding eutrophication of MDE lakes.


2021 ◽  
Author(s):  
Olga Tammeorg ◽  
Gertrud Nürnberg ◽  
Peeter Nõges ◽  
Juha Niemistö

Abstract Coloured lakes are often productive. While their increased productivity can be the consequence of internal recycling of phosphorus (P), the impact of humic substances on these interactions is largely unexplored. Here we elucidated the spatial variations in sediment P release by diffusion in four Finnish lakes with high trophic state. For further insights regarding possible implications of humic substances on sediment P release, we extended our analysis to lakes worldwide using data from the scientific literature. Variations in sediment P release rates (RR) in four Finnish lakes were largely explained by trophic state and mixing state of the water column. P release by diffusion was positively correlated with the iron-bound P fraction, but negatively with the organic-P fraction in surface sediment. Furthermore, the diffusive flux of P correlated positively with the RR predicted from a published model based on total P concentration (positive effect) and organic matter content (negative effect) in surface sediments. Analysis of the worldwide data confirmed the importance of humic substances in internal P recycling. While dissolved organic carbon (DOC) in water correlated positively with RR in oligotrophic lakes, the correlation was negative in lakes of higher trophic state. The implications for internal P loading and primary production, however, are not so straightforward. In a multiple-stressor world (climate change, eutrophication), response of internal P load in boreal lakes to changes in DOC is particularly unpredictable. This is because the variables relevant to internal P loading, i.e. RR and anoxic factor, may be affected in a reverse direction.


2021 ◽  
Author(s):  
John Boyle ◽  
Maddy Moyle

<p>Lake sediment records offer the opportunity to quantify past changes in catchment P exports, information essential if we are to understand the long-term drivers that control P cycling. However, the interpretation of such records generally depends on the assumption that sediment P concentration profiles remain intact after burial. This assumption appears to be in conflict with the phenomenon of internal P loading, whereby P is exported from sediment to the water column. Here we apply a simple long-term mass balance model to published sediment record data from Søbygaard, a site that has an exceptionally high internal P loading, and an exceptionally well-studied sediment P record (Søndergaard and Jeppesen, 2019). Repeat cores collected from 1985 to 2004 constrain the temporal evolution of a sediment P peak arising from past sewage inflows, providing a critical test of our modelling approach. We find that useful sediment inference of long-term mean lake water TP is preserved in the sediment record, and predict also useful inference of long-term mean external P loading. Limitation on temporal resolution of the records is examined.</p>


2021 ◽  
Author(s):  
Hanna S. Anderson ◽  
Thomas H. Johengen ◽  
Casey M. Godwin ◽  
Heidi Purcell ◽  
Peter J. Alsip ◽  
...  

2020 ◽  
Author(s):  
David O'Connell ◽  
Nienke Ansems ◽  
Ravi Kukkadapu ◽  
Deb jaisi ◽  
Diane orihel ◽  
...  

<p>Stringent environmental policies in many countries have played an extensive role in reducing external phosphorus (P) loading to lakes from agriculture and urban sources. Nonetheless, such reductions in external P loading to many eutrophic lakes have not resulted in the expected concurrent restitution of water quality. Such a delayed recovery of many lakes is blamed both on internal loading of legacy P from lake sediments (i.e., benthic recycling) and the amplification of such internal P loading processes due to the reduction in external P concentrations. Hence, a detailed process understanding of P cycling at the sediment-water interface (SWI) is critical to understand nutrient loading, water quality and associated effects on lake water quality. Much of the work on sedimentary P cycling has traditionally focused on inorganic processes of soluble phosphate, particularly sorption to metals (Fe, Mn, Al) oxyhydroxides and clays. However, there is increasing recognition that organic forms of P, along with interactions between phosphate and humic substances, also play a decisive role in controlling P fluxes between sediments and the overlying water column.</p><p>This study focused on gaining further understanding of the such processes through the collection of sediment cores from the oxygenated epilimnion and the mostly anoxic hypolimnion of Lake 227 of the Experimental Lakes Area (ELA) in Ontario, Canada. Since 1969, this unique experimental lake has been fertilized with phosphorus (P), which triggered a relatively rapid trophic transition from oligotrophic to eutrophic conditions. The cores contain a chronological record of changes in sediment burial rates and sediment P speciation across this trophic transition.</p><p>Interpretation of such changes was undertaken by coupling results of chemical extractions with <sup>210</sup>Pb sediment dating, <sup>31</sup>P NMR, XANES and Mössbauer spectroscopy. The major sedimentary P fraction prior to lake enrichment starting in 1969 was organic P (P<sub>Org</sub>). Fertilization of the lake in 1969 coincided with significant increases in the accumulation rate of sediment, total organic carbon (TOC) and total P (TP), in addition to a marked relative contribution of NaHCO<sub>3</sub> extractable P. The combined proportion of P<sub>Hum</sub> and P<sub>Org</sub> desposited since artificial fertilization in 1969 account for ≥70% of total P burial in the sediments. The anticipated composition of such P<sub>Hum</sub> fractions was hypothesized to be ternary phosphate (PO<sub>4</sub>) complexes with humic substances. In support of this, the strong linear correlation between P and iron (Fe) extracted by NaHCO<sub>3</sub> implies a close association of the two elements in the humic fraction. Furthermore, XANES and Mössbauer spectra indicate that most Fe in the post-1969 sediments is conserved in the +3 oxidation state, which may be ascribed to the stabilization of reducible Fe by organic matter, partially due to the formation of ternary PO<sub>4</sub>-Fe(III)-humic complexes. Our findings suggest the artificial eutrophication of Lake 227 resulted in the accelerated accumulation of a large sedimentary reservoir of reactive sediment P that may drive continued internal P loading to the water column following the cessation of artificial fertilization. </p><p><strong> </strong></p>


2017 ◽  
Vol 74 (12) ◽  
pp. 2005-2029 ◽  
Author(s):  
Diane M. Orihel ◽  
Helen M. Baulch ◽  
Nora J. Casson ◽  
Rebecca L. North ◽  
Chris T. Parsons ◽  
...  

Many physical, chemical, and biological processes in freshwater ecosystems mobilize the nutrient phosphorus (P) from sediments, which in turn may contribute to the formation of harmful algal blooms. Here, we critically reviewed internal P loading in Canadian fresh waters to understand the geographic patterns and environmental drivers of this important process. From 43 publications, we consolidated 618 estimates of internal P loading from Canadian freshwater ponds, lakes, reservoirs, and coastal wetlands (n = 70). Expressed in terms of total P, short-term gross rates in sediment samples (Lgross) ranged from −27 to 54 mg·m−2·day−1(n = 461), while long-term net rates in whole ecosystems (Lnet) ranged from −1694 to 10 640 mg·m−2·year−1(n = 157). The main environmental drivers of this variation were oxygen, pH, geology, and trophic state. Internal P loading tended to be higher during the open-water season and most prominent in small prairie lakes. Priorities for future research on internal P loading should include resolving methodological problems, assessing the relative importance of different mechanisms, examining the influence of anthropogenic activities, and quantifying rates in understudied ecosystems.


2017 ◽  
Vol 18 (2) ◽  
pp. 688-697 ◽  
Author(s):  
Yufei Bao ◽  
Yuchun Wang ◽  
Mingming Hu ◽  
Qiwen Wang

Abstract Huangbai River, including four enchained reservoirs, is located in a phosphate-rock watershed in Yichang City, Central China. Previous studies showed that pollution levels due to activities of phosphate mining (PM) were extremely high and the water quality of reservoirs was severely affected by sedimentation. Yet, detailed knowledge of the sediment is lacking at that high phosphorus (P) concentration basin. Therefore, the different P fractions and its diffusion fluxes at the water-sediment interface of four deep reservoirs have been investigated for the first time to understand the internal P loading. The results indicated that the concentrations of total P , ranging from 9,631.5 to 581.6 mg kg−1, exhibited an apparent spatial trend from the upstream to the downstream reservoirs, which corresponded with the activities of P mining in this basin. The P-fraction concentrations obtained from the sites were mainly ranked in this order: P associated with calcium (Ca-Pi) > organic P (Po) > P bound to aluminum (Al), ferrum (Fe) and manganese (Mn) oxides and hydroxides (Fe/Al-Pi). The orthophosphate diffusion fluxes ranged from −0.40 ± 0.09 to 0.95 ± 0.14 mg m−2 d−1 which were positively related to P fraction concentrations while negatively related to oxidation–reduction potential and dissolved oxygen values. These results implied the dynamics role of internal P loading. The principle component analysis suggested that PM activities and internal P loading were the most reactive factors in this river system.


2016 ◽  
Vol 23 (18) ◽  
pp. 18512-18523 ◽  
Author(s):  
Lihuan Qin ◽  
Qinghui Zeng ◽  
Wangshou Zhang ◽  
Xuyong Li ◽  
Alan D. Steinman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document