Transport of Lithium Tracer and E. coli in Agricultural Wastewater Treatment Wetlands

2008 ◽  
Vol 43 (2-3) ◽  
pp. 137-144 ◽  
Author(s):  
Leah Boutilier ◽  
Rob Jamieson ◽  
Robert Gordon ◽  
Craig Lake

Abstract Agricultural waste must be managed effectively to protect surface and groundwater resources, as well as human health. Constructed wetlands can provide a low-cost environmentally acceptable method for the treatment of agricultural wastewater. An ionic tracer (Lithium chloride [LiCl]) and a biotracer (a naladixic acid-resistant strain of Escherichia coli) were injected into six pilot-scale constructed wetlands treating dairy wastewater: three surface-flow (SF) wetlands and three subsurfaceflow (SSF) wetlands. Each wetland was 3.9-m long and 1.7-m wide. Residence time distribution functions were calculated for each wetland to investigate the hydraulic behaviour of each system during winter and summer conditions. During the summer study, the mean residence times for SF wetlands 2, 4, and 6 were 12, 16, and 14 days, respectively, while the mean residence time for SSF wetlands 1, 3, and 5 were 23, 18, and 22 days, respectively. The longitudinal dispersion coefficients were in the order of 10-6 m2 s-1 for each wetland during the summer and winter. The mean residence time for SF wetlands 2, 4, and 6 during the winter study were 8, 10, and 10 days, respectively, while the mean residence time for SSF wetlands 1, 3, and 5 were 8, 9, and 10 days, respectively. E. coli effluent peaks often occurred prior to Li peaks, suggesting that bacteria may be motile within the wetland environment. This study suggests that dispersion is an important mass transport process in both SF and SSF wetlands. Long-term operation of SF and SSF treatment wetlands may cause reduced retention times and treatment efficiency due to organic matter accumulation and channelling. Cold winter temperatures may also increase the survival of bacteria within treatment wetland systems, decreasing the wetland's ability to reduce bacteria concentrations during the winter months.

1982 ◽  
Vol 47 (12) ◽  
pp. 3362-3370
Author(s):  
Otakar Söhnel ◽  
Eva Matějčková

Filtration properties of batchwise precipitated suspensions of Zn(OH)2, Mg(OH)2 and Cu(OH)2 and continuously precipitated Al(OH)3 were studied. For batchwise precipitated suspensions was verified the theoretically predicted dependence of specific filtration resistance on initial supersaturation and for the continuously precipitated Al(OH)3 the relation between the specific filtration resistance and the mean residence time of suspension in the reactor. Dependences were also recorded between the bed porosity and concentration of precipitated solutions, specific filtration resistance and used filtration pressure and the effect of aging of the batchwise precipitated suspension of Mg(OH)2on its filtration properties. The used CST method for determination of filtration characteristics of Zn(OH)2 suspension was also studied.


2008 ◽  
Vol 56 (3) ◽  
pp. 272 ◽  
Author(s):  
Zhi Y. Yuan ◽  
Han Y. H. Chen ◽  
Ling H. Li

Nitrogen use efficiency (NUE) can be divided into two components, i.e. N productivity (A) and the mean residence time (MRT). Controlled experiments indicate that there is not a trade-off between A and MRT within species, but this theory has not been well tested in field conditions. Here, we studied the A, MRT and NUE of Stipa krylovii Roshev. in a grassland over 4 years of N fertilisation experimentation. The three parameters (A, MRT and NUE) were significantly related to soil N supply and there was a negative relationship between A and MRT within this species (r = –0.775, P < 0.05), i.e. plants with higher A had lower MRT. Our results showed a trade-off between A and MRT within this Stipa species and this observed trade-off was attributed to different responses of A and MRT to soil fertility.


2021 ◽  
Vol 9 ◽  
Author(s):  
Michael Schlüter ◽  
Philipp Maier

To quantify submarine groundwater discharge, we developed an inexpensive automated seepage meter that applies a tracer injection and the computation of the mean residence time. The SGD-MRT is designed to measure a wide range of discharge rates from about 30 to 800 cm³/min and allows minimizing backpressures caused by pipe friction or flow sensors. By modifying the inner volume of the flow-through unit, the range of measurement is adjustable to lower or higher discharge rates. For process control and data acquisition, an Arduino controller board is used. In addition, components like temperature, conductivity, and pressure sensors or pumps extend the scope of the seepage meter. During field tests in the Wadden Sea, covering tidal cycles, discharge rates of more than 700 cm³/min were released from sand boils. Based on the measured discharge rates and numerical integration of the time series data, a water volume of about 400 dm3 with a seawater content of less than 12% was released from the sand boil within 7 h.


2019 ◽  
Vol 27 (4) ◽  
pp. 255-263
Author(s):  
Kseniia Y. Rybka ◽  
Nataliia M. Shchegolkova

Constructed wetlands (CW) - shallow surfaces or subsurface water bodies, planted with higher aquatic plants and designed to treat wastewater - have been actively used in world practice for the last decades. There are no universal principles for designing such systems, so for each combination of landscape (in which a CW is located) and the quality of wastewater, an individual type of CW is selected. The article provides an overview of the principles adopted in the world for calculating the main technological parameters of CWs (choice of the type of CW, calculation of the area of CW, the residence time of the water in the system, the choice of filtering medium, etc.) developed on the basis of numerous functioning objects. The recommendations given in the article are applicable for small and mediumsized CWs intended for the treatment of domestic, storm and agricultural wastewater.


2015 ◽  
Vol 54 (43) ◽  
pp. 10885-10892 ◽  
Author(s):  
Junwei Yang ◽  
Xupeng Zhang ◽  
Guoping Shen ◽  
Jiazhi Xiao ◽  
Youhai Jin

1992 ◽  
Vol 73 (6) ◽  
pp. 2476-2482 ◽  
Author(s):  
S. Zanconato ◽  
D. M. Cooper ◽  
T. J. Barstow ◽  
E. Landaw

To test the hypothesis that children store less CO2 than adults during exercise, we measured breath 13CO2 washout dynamics after oral bolus of [13C]bicarbonate in nine children [8 +/- 1 (SD) yr, 4 boys] and nine (28 +/- 6 yr, 5 males) adults. Gas exchange [O2 uptake and CO2 production (Vco2)] was measured breath by breath during rest and during light (80% of the anaerobic threshold) intermittent exercise. Breath samples were obtained for subsequent analysis of 13CO2 by isotope ratio mass spectrometry. The tracer estimate of Vco2 was highly correlated to Vco2 measured by gas exchange (r = 0.97, P < 0.0001). The mean residence time was shorter in children (50 +/- 5 min) compared with adults (69 +/- 7 min, P < 0.0001) at rest and during exercise (children, 35 +/- 7 min; adults, 50 +/- 11 min, P < 0.001). The estimate of stored CO2 (using mean Vco2 measured by gas exchange and mean residence time derived from tracer washout) was not statistically different at rest between children (254 +/- 36 ml/kg) and adults (232 +/- 37 ml/kg). During exercise, CO2 stores in the adults (304 +/- 46 ml/kg) were significantly increased over rest (P < 0.001), but there was no increase in children (mean exercise value, 254 +/- 38 ml/kg). These data support the hypothesis that CO2 distribution in response to exercise changes during the growth period.


Sign in / Sign up

Export Citation Format

Share Document