Improving the performance of dead-end ultrafiltration systems: comparing air and water flushing

2001 ◽  
Vol 1 (5-6) ◽  
pp. 97-106
Author(s):  
M. Kennedy ◽  
S. Siriphannon ◽  
S. van Hoof ◽  
J. Schippers

A cleaning protocol that effectively removes fouling from hollow fiber UF systems without excessive use of chemicals, product water or (long) down time is needed. Cross flushing with UF feed water has been reported to increase the net flux of hollow fiber systems by reducing the frequency of backwashing, the consumption of permeate and the system down time. In this study, the flux restoration achieved in a vertical and horizontal UF system employing an intermittent water and water/air cross flush were compared. The flux restoration in the vertical UF system was not improved by the addition of air to the water flush and a maximum flux restoration of 82% was achieved, irrespective of the presence of air. Similarly, in a horizontal ultrafiltration system, a maximum flux restoration of 82% was also achieved with a water flush (v = 1.63 m/s). However, the addition of air to the water flush decreased the flux restoration to 40% at the highest water/air ratio (33% air). Low flux restoration in the horizontal system was attributed to residual air in the module after cross flushing. Flushing with water alone (v = 1.63 m/s) yielded a wall shear stress of 16 Pa compared with 130 Pa and 279 Pa in the liquid film surrounding the air slugs in the horizontal and vertical UF system, respectively, with a water/air ratio of 2:1. Despite the high shear force on the cake layer accumulated when air was added to the system, the maximum flux restoration was 82% both with and without air. This was attributed to the fact that it was the filtration mechanism and not the shear force on the cake layer that limited flux restoration during cross flushing. To improve the flux restoration that can be achieved by the cross flushing process, the filtration mechanism must be manipulated to minimize blocking filtration and induce cake filtration from the beginning of each filtration cycle.

Modelling ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 18-42
Author(s):  
J. Köry ◽  
A. Krupp ◽  
C. Please ◽  
I. Griffiths

Understanding the operation of filters used to remove particulates from fluids is important in many practical industries. Typically the particles are larger than the pores in the filter so a cake layer of particles forms on the filter surface. Here we extend existing models for filter blocking to account for deformation of the filter material and the cake layer due to the applied pressure that drives the fluid. These deformations change the permeability of the filter and the cake and hence the flow. We develop a new theory of compressible-cake filtration based on a simple poroelastic model in which we assume that the permeability depends linearly on local deformation. This assumption allows us to derive an explicit filtration law. The model predicts the possible shutdown of the filter when the imposed pressure difference is sufficiently large to reduce the permeability at some point to zero. The theory is applied to industrially relevant operating conditions, namely constant flux, maximising flux and constant pressure drop. Under these conditions, further analytical results are obtained, which yield predictions for optimal filter design with respect to given properties of the filter materials and the particles.


2001 ◽  
Vol 1 (5-6) ◽  
pp. 151-156
Author(s):  
G. Galjaard ◽  
J. van Paassen ◽  
P. Buijs ◽  
F. Schoonenberg

The feasibility of ultra- and microfiltration depends strongly on the achieved net flux. Direct treatment of surface water frequently results in low net fluxes and high cleaning frequencies. Experiments have been conducted at constant flux on surface water with an ultrafiltration pilot plant with direct filtration, in-line coagulation and pre-coating (EPCE) with ferric hydroxide flocs. The aim was to control and reduce the rate of fouling. With the use of a pre-coat at the beginning of the filtration cycle a stable ultrafiltration process was obtained. This is contrary to the use of in-line coagulation and direct filtration which resulted, due to a very high fouling potential of the feed water, in high fouling rates at low fluxes. The result of this exploratory research is an important step towards a higher feasibility of micro- and ultrafiltration.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 329-336 ◽  
Author(s):  
S. Kim ◽  
S.-H. Cho ◽  
H. Park

Cake layer in crossflow microfiltration(CFMF) can be reduced by coagulation, enhancing membrane flux. This is because enlarging particle size by coagulation increases shear-induced diffusivity and the back-transport of rejected particles. However, it is known that the enlarged particles are disaggregated by the shear force of the pump while passing through it. This study looks at the disaggregation in relation to cake layer reduction. Kaolin and polysulfon hollow fiber microfilters are used for experiments. The reduction of cake resistance by coagulation is observed in a range of 17% to 53% at the various coagulation conditions. Particle size analysis results of the experiments show that aggregated particles in feed are completely disaggregated by the pump but re-aggregation of particles occurs in the membrane. This suggests that the re-aggregation of particles is critical to cake reduction and flux enhancement, since the aggregated particles are completely broken. The mechanisms for re-aggregation in the membrane are the same as those for coagulation in the feed tank. Charge neutralization is better for CCFMF than sweep flocculation although it has two drawbacks in operation.


2001 ◽  
Vol 1 (5-6) ◽  
pp. 39-47
Author(s):  
Y. Matsui ◽  
A. Yuasa ◽  
F. Colas

The effects of operational modes on the removal of a synthetic organic chemical (SOC) in natural water by powdered activated carbon (PAC) during ultrafiltration (UF) were studied, through model simulations and experiments. The removal percentage of the trace SOC was independent of its influent concentration for a given PAC dose. The minimum PAC dosage required to achieve a desired effluent concentration could quickly be optimized from the C/C0 plot as a function of the PAC dosage. The cross-flow operation was not advantageous over the dead-end regarding the SOC removal. Added PAC was re-circulated as a suspension in the UF loop for only a short time even under the cross-flow velocity of gt; 1.0 m/s. The cross-flow condition did not contribute much to the suspending of PAC. The pulse PAC addition at the beginning of a filtration cycle resulted in somewhat better SOC removal than the continuous PAC addition. The increased NOM loading on PAC which was dosed in a pulse and stayed longer in the UF loop could possibly further decrease the adsorption rate.


2008 ◽  
Vol 308 (1-2) ◽  
pp. 218-229 ◽  
Author(s):  
W.J.C. van de Ven ◽  
K. van’t Sant ◽  
I.G.M. Pünt ◽  
A. Zwijnenburg ◽  
A.J.B. Kemperman ◽  
...  

1998 ◽  
Vol 37 (10) ◽  
pp. 135-146 ◽  
Author(s):  
Akira Yuasa

Microfiltration (MF) and ultrafiltration (UF) pilot plants were operated to produce drinking water from surface water from 1992 to 1996. Microfiltration was combined with pre-coagulation by polyaluminium chloride and was operated in a dead-end mode using hollow fiber polypropylene and monolith type ceramic membranes. Ultrafiltration pilot was operated in both cross-flow and dead-end modes using hollow fiber cellulose acetate membrane and was combined occasionally with powdered activated carbon (PAC) and granular activated carbon (GAC) adsorption. Turbidity in the raw water varied in the range between 1 and 100 mg/L (as standard Kaolin) and was removed almost completely in all MF and UF pilot plants to less than 0.1 mg/L. MF and UF removed metals such as iron, manganese and aluminium well. The background organics in the river water measured as KMnO4 demand varied in the range between 3 and 16 mg/L. KMnO4 demand decreased to less than 2 mg/L and to less than 3 mg/L on the average by the coagulation-MF process and the sole UF process, respectively. Combination of PAC or GAC adsorption with UF resulted in an increased removal of the background organics and the trihalomethanes formation potential as well as the micropollutants such as pesticides. Filtration flux was controlled in the range between 1.5 and 2.5 m/day with the trans-membrane pressure less than 100 kPa in most cases for MF and UF. The average water recovery varied from 99 to 85%.


2012 ◽  
Author(s):  
Wan Ramli Wan Daud

Although ultrafiltration and hyperfiltration have replaced many liquid phase separation equipment, both are still considered as “non–unit operation” processes because the sizing of both equipments could not be calculated using either the equilibrium stage, or the rate–based methods. Previous design methods using the dead–end and complete–mixing models are unsatisfactory because the dead–end model tends to underestimate the membrane area, due to the use of the feed concentration in the driving force, while the complete–mixing model tends to overestimate the membrane area, due to the use of a more concentrated rejection concentration in the driving force. In this paper, cross–flow models for both ultrafiltration and hyperfiltration are developed by considering mass balance at a differential element of the cross–flow module, and then integrating the expression over the whole module to get the module length. Since the modeling is rated–based, the length of both modules could be expressed as the product of the height of a transfer unit (HTU), and the number of transfer unit (NTU). The solution of the integral representing the NTU of ultrafiltration is found to be the difference between two exponential integrals (Ei(x)) while that representing the NTU of hyperfiltration is found to be the difference between two hypergeometric functions. The poles of both solutions represent the flux extinction curves of ultrafiltration and hyperfiltration. The NTU for ultrafiltration is found to depend on three parameters: the rejection R, the recovery S, and the dimensionless gel concentration Cg. For any given Cg and R, the recovery, S, is limited by the corresponding flux extinction curve. The NTU for hyperfiltration is found to depend on four parameters: the rejection R, the recovery S, the polarization β, and the dimensionless applied pressure difference ψ. For any given ψ and R, the recovery, S, is limited by the corresponding flux extinction curve. The NTU for both ultrafiltration and hyperfiltration is found to be generally small and less than unity but increases rapidly to infinity near the poles due to flux extinction. Polarization is found to increase the NTU and hence the length and membrane area of the hollow fiber module for hyperfiltration. Key words: Ultrafiltration; hyperfiltration; reverse osmosis; hollow fiber module design; crossflow model; number of transfer unit; height of a transfer unit


Membranes ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 149 ◽  
Author(s):  
Bin Huang ◽  
Hangkun Gu ◽  
Kang Xiao ◽  
Fangshu Qu ◽  
Huarong Yu ◽  
...  

Membrane fouling is still the bottleneck affecting the technical and economic performance of the ultrafiltration (UF) process for the surface water treatment. It is very important to accurately understand fouling mechanisms to effectively prevent and control UF fouling. The rejection performance and fouling mechanisms of the UF membrane for raw and coagulated surface water treatment were investigated under the cycle operation of constant-pressure dead-end filtration and backwash. There was no significant difference in the UF permeate quality of raw and coagulated surface water. Coagulation mainly removed substances causing turbidity in raw surface water (including most suspended particles and a few organic colloids) and thus mitigated UF fouling effectively. Backwash showed limited fouling removal. For the UF process of both raw and coagulated surface water, the fittings using single models showed good linearity for multiple models mainly due to statistical illusions, while the fittings using combined models showed that only the combined complete blocking and cake layer model fitted well. The quantitative calculations showed that complete blocking was the main reason causing flux decline. Membrane fouling mechanism analysis based on combined models could provide theoretical supports to prevent and control UF fouling for surface water treatment.


Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 213
Author(s):  
Stéphane Venne ◽  
Onita D. Basu ◽  
Benoit Barbeau

Membrane fouling in surface waters impacted by cyanobacteria is currently poorly controlled and results in high operating costs. A chemically enhanced backwash (CEB) is one possible strategy to mitigate cyanobacteria fouling. This research investigates the potential of using an ozone CEB to control the fouling caused by Microcystis aeruginosa in filtered surface water on a ceramic ultrafiltration membrane. Batch ozonation tests and dead-end, continuous flow experiments were conducted with ozone doses between 0 and 19 mg O3/mg carbon. In all tests, the ozone was shown to react more rapidly with the filtered surface water foulants than with cyanobacteria. In addition, the ozone CEB demonstrated an improved mitigation of irreversible fouling over 2 cycles versus a single CEB cycle; indicating that the ozone CEB functioned better as the cake layer developed. Ozone likely weakens the compressible cake layer formed by cyanobacteria on the membrane surface during filtration, which then becomes more hydraulically reversible. In fact, the ozone CEB reduced the fouling resistance by 35% more than the hydraulic backwash when the cake was more compressed.


Sign in / Sign up

Export Citation Format

Share Document