Optimisation of conventional water treatment processes in Adelaide, South Australia

2002 ◽  
Vol 2 (5-6) ◽  
pp. 157-163 ◽  
Author(s):  
M. Holmes ◽  
D. Oemcke

Supplying drinking water in metropolitan Adelaide to meet contractual and Australian Drinking Water Guidelines is a challenge as source waters contain high concentrations of natural organic matter (NOM) that often exceed 10 mg/L dissolved organic carbon (DOC). The US EPA indicates that enhanced coagulation is the best available technology to control DOC in drinking water treatment plants. United Water has used enhanced coagulation at Metropolitan Adelaide WTPs since 1997 to improve water quality in the distribution system. NOM reduction has led to treated water with a lower chlorine demand allowing a greater residual penetration enabling improved bacteriological compliance. Disinfection by-product formation has also been controlled within the distribution system. Pathogen treatment barriers to remove Cryptosporidium and Giardia have been strengthened by adopting improved filter pre-treatment, enhanced coagulation and filter pre-chlorination to reduce particle breakthrough at all suitable WTPs.

2001 ◽  
Vol 1 ◽  
pp. 39-43 ◽  
Author(s):  
V. Zitko

Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.


2009 ◽  
Vol 9 (4) ◽  
pp. 379-386 ◽  
Author(s):  
S. A. Baghoth ◽  
M. Dignum ◽  
A. Grefte ◽  
J. Kroesbergen ◽  
G. L. Amy

For drinking water treatment plants that do not use disinfectant residual in the distribution system, it is important to limit availability of easily biodegradable natural organic matter (NOM) fractions which could enhance bacterial regrowth in the distribution system. This can be achieved by optimising the removal of those fractions of interest during treatment; however, this requires a better understanding of the physical and chemical properties of these NOM components. Fluorescence excitation-emission matrix (EEM) and liquid chromatography with online organic carbon detection (LC-OCD) were used to characterize NOM in water samples from one of the two water treatment plants serving Amsterdam, The Netherlands. No disinfectant residual is applied in the distribution system. Fluorescence EEM and LC-OCD were used to track NOM fractions. Whereas fluorescence EEM shows the reduction of humic-like as well as protein-like fluorescence signatures, LC-OCD was able to quantify the changes in dissolved organic carbon (DOC) concentrations of five NOM fractions: humic substances, building blocks (hydrolysates of humics), biopolymers, low molecular weight acids and neutrals.


2008 ◽  
Vol 8 (2) ◽  
pp. 181-187
Author(s):  
B. Sani ◽  
L. Rossi ◽  
C. Lubello ◽  
S. Zacchei

In Italian drinking water treatment plants (DWTP), the problem of chlorination by-products control is very important as the Italian drinking water regulations (Dlgs. 31/2001, as enactment of the CEU directive 98/83) set very strict limits for these compounds. A possible strategy for controlling the concentrations of DBPs (disinfection by-products) is the application of treatment processes able to reduce the concentration of dissolved organic matter, the main precursor of DBPs, before the dosage of chlorine-based disinfectants. Recently, ion exchange resins for the removal of dissolved organics have shown several applications in drinking water treatment. In this experimental study, the treatment with ion exchange resins MIEX®DOC and the treatment with GAC (granular activated carbon) were evaluated for the removal of dissolved organics. Moreover, the effects of MIEX® pre-treatment on the subsequent GAC filtration phase were evaluated, with particular attention to the effects on the life-time of the GAC filter. The GAC filter operation was simulated by rapid small scale column tests (RSSCT), which allow the evaluation of the GAC breakthrough curve in a shorter time with respect to a full plant and pilot plant trials. On the basis of the experimental results, the ion exchange process was very efficient in dissolved organics removal (60–70% UV254 removal). Moreover, the results indicated that the application of ion exchange resins as pre-treatment in a conventional drinking water treatment train could increase the filter life-time in the subsequent GAC adsorption phase (about 200%) resulting in potentially important cost benefits for the overall treatment process.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 459-464 ◽  
Author(s):  
S. Chae

The aim of this study was to characterize and compare natural organic matter (NOM) removal and disinfection by-product (DBP) formation in the drinking water treatment train that can give valuable information, while optimizing the treatment process. In this study, the determination of the hydrophobic (HPO), transphilic (THP) and hydrophilic (HPI) NOM distribution was used in parallel with more related drinking water parameters to compare the selected waters. High-performance size-exclusion chromatography (HPSEC) was applied to evaluate the relative changes of molecular size distribution of NOM in different treatment steps and source waters. This showed that the quantity, speciation and activated carbon adsorption of DBPs could vary not only by water quality, but also by the distribution and properties of the organic molecules that comprise NOM.


2020 ◽  
Vol 20 (8) ◽  
pp. 3301-3317
Author(s):  
Rafael Paulino ◽  
Pierre Bérubé

Abstract Artificial neural networks (ANNs) are increasingly being used in water treatment applications because of their ability to model complex systems. The present study proposed a framework to develop and validate ANNs for drinking water treatment and distribution system water quality applications. The framework was used to develop ANNs to identify the optimal ozone dose required for effective UV disinfection and to meet regulatory requirements for disinfection by-products (DBPs) in the distribution system. Treatment at a full-scale treatment plant was successfully modelled, with treated water UV transmittance as the output variable. ANNs could be used to identify operating setpoints that minimize operating costs for effective disinfection during drinking water treatment. However, because of the limited data available to train and validate the distribution system ANNs (i.e. n = 48; 15 years of quarterly measurements), these could not be used to reliably identify operating setpoints that also ensure compliance with DBP regulations.


Sign in / Sign up

Export Citation Format

Share Document