Evaluation of water losses in distribution networks: Rammallah as a case study

2004 ◽  
Vol 4 (3) ◽  
pp. 183-195 ◽  
Author(s):  
Z. Mimi ◽  
O. Abuhalaweh ◽  
V. Wakileh ◽  
Jerusalem Water Undertaking Staff

Water is one of the most valuable natural resources in Palestine. Therefore, it is very crucial for the Palestinians to achieve proper planning and management of their water resources to ensure proper usage of their water in the different sectors. Moreover, many of the Palestinian localities still lack the existence of water networks while many others suffer from the poor conditions and high losses in their networks that reach up to 50% of the input into the supply system. The paper will present a method to determine water losses from distribution networks and procedures of reducing it in a practical way. The method is based on three main steps: (1) tracing leaks of the supply districts or pipe sections by means of tightness tests and measuring minimum night flow; (2) pinpointing the leaks using the electro-acoustic techniques by DF Junior device and (3) repairing leaks. Consequently, the amount of leakage for the study area was largely reduced (from 5.6 L/sec to 0.16 L/sec).

Author(s):  
V Shinju ◽  
Aswathi Prasad

The natural resources are repository for the survival of all of us, so they must be used efficiently to meet the present needs while conserving them for future generations. An action to develop capacities from global to household levels for their sustainable management and regulation is required henceforth. Of these natural resources, water resources are most precious. If there is no water; there would be no life on earth. Since ‘water is the elixir of life’, water resource management has been considered as one of the most relevant areas of intervention. Understanding the gender dimensions of water resource management is a starting point for reversing the degradation of water resources. Women play an important role here since they have to access the water resources for almost all the activities on a daily basis. As the women are the strong social agents, effective and improved water preservation techniques could be achieved through their empowerment that may eventually lead to the well-being of the households in particular and of the community in general. Therefore, the major research question posed in this study is to analyze the role of women in the preservation and management of water, an inevitable, precious but diminishing natural resource. The study also intends to describe the relationship between the three ‘W's-Women, Water & Well-being. Both qualitative and quantitative approaches are essential here as it is a contingent issue in the present scenario. Psychological dimensions were also explored since the issue is affecting the routine life of the community. The case study of women belonging to the Kuttadampadam region was done to explain the role of women in preserving water resources in the areas affecting severe water scarcity.


2017 ◽  
Vol 6 (2) ◽  
pp. 98
Author(s):  
Ryland Cairns ◽  
Michael Macpherson

The purpose of this paper is to explore the potential of a six sigma approach to reducing water losses through a combination of water efficiency and leak detection on a private distribution system. The paper takes the form of a case study that investigates the implementation of water reduction strategy across an estate with 26 miles of potable water pipe and over 200 facilities. This incorporates methods developed in the water industry such as water loss reduction and water demand management. The paper demonstrates that large water savings could be made through adoption of a six sigma approach. The approach has the potential to be applied to a wide range of situations including sites with limited technology. This case study provides a useful source for Facilities Managers involved in the management of utilities to determine suitable water saving approaches and strategies for large estates with private water distribution networks.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1086 ◽  
Author(s):  
Ioan Așchilean ◽  
Mihai Iliescu ◽  
Nicolae Ciont ◽  
Ioan Giurca

This article analyses the relation between the failures that occurred in the water supply network and the road traffic in the city of Cluj-Napoca in Romania. The calculations in this case study were made using the Autodesk Robot Structural Analysis Professional 2011 software. In the case study, the following types of pipes were analysed: steel, gray cast iron, ductile cast iron and high density polyethylene (HDPE). While in most studies only a few sections of pipelines, several types of pipelines and certain mounting depths have been analysed, the case study presented analyses the entire water supply system of a city with a population of 324,576 inhabitants, whose water supply system has a length of 479 km. The results of the research are useful in the design phase of water distribution networks, so depending on the type of pipe material, the minimum depth of installation can be indicated, so as to avoid the failure of the pipes due to road traffic. From this perspective, similar studies could also be carried out regarding the negative influence of road traffic on sewerage networks, gas networks and heating networks.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 98
Author(s):  
Athanasios V. Serafeim ◽  
George Kokosalakis ◽  
Roberto Deidda ◽  
Irene Karathanasi ◽  
Andreas Langousis

Quantification of water losses (WL) in water distribution networks (WDNs) is a crucial task towards the development of proper strategies to reduce them. Currently, WL estimation methods rely on semi-empirical assumptions and different implementation strategies that increase the uncertainty of the obtained estimates. In this work, we compare the effectiveness and robustness of two widely applied WL estimation approaches found in the international literature: (a) the water balance, or top-down, approach introduced by the International Water Association (IWA), and (b) the bottom-up or minimum night flow (MNF) approach, based on a recently proposed probabilistic MNF estimation method. In doing so, we use users’ consumption and flow-pressure data from the 4 largest pressure management areas (PMAs) of the WDN of the city of Patras (the third largest city in Greece), which consist of more than 200 km of pipeline, cover the entire city center of Patras, and serve approximately 58,000 consumers. The obtained results show that: (a) when MNF estimation is done in a rigorous statistical setting from high resolution flow-pressure timeseries, and (b) there is sufficient understanding of the consumption types and patterns during day and night hours, the two approaches effectively converge, allowing for more reliable estimation of the individual WL components. In addition, when high resolution flow-pressure timeseries are available at the inlets of PMAs, the suggested version of the bottom-up approach with probabilistic estimation of MNF should be preferred as less sensitive, while allowing for confidence interval estimation of the individual components of water losses and development of proper strategies to reduce them.


Water SA ◽  
2020 ◽  
Vol 46 (1 January) ◽  
Author(s):  
HE Jacobs ◽  
JL Du Plessis ◽  
Nicole Nel ◽  
S Gugushe ◽  
S Levin

Baselines are often employed in shared water saving contracts for estimating water savings after some type of intervention by the water service company. An adjustment to the baseline may become necessary under certain conditions. Earlier work has described a number of relatively complex methods for baseline determination and adjustment, but application in regions faced with relatively limited data becomes problematic. If the adjustment were determined before finalising the contractual matters, it would be possible to gather the required data in order to determine the adjustment. However, in cases where no adjustment was fixed prior to the contract, a method is required to determine an adjustment mid-contract based on whatever data are available at the time. This paper presents a methodology for baseline adjustment in an existing shared water savings contract and explains how adjustment could be determined mid-contract, under conditions of limited data. The adjustment compensates for expected reduced water consumption due to external influences induced by serious water restrictions, typically introduced during periods of drought. The fundamental principle underpinning the baseline adjustment methodology presented in this paper involved segregating real water losses from the actual consumption of end-users, preferably by analysing the minimum night flow. In the absence of recorded night flows, an alternative procedure involving the minimum monthly consumption pre- and post-baseline was employed. The baseline adjustment method was subsequently applied in a South African case study, reported on separately. This technique is helpful because adjustments could be determined without adding unnecessary complexity or cost, and provides a means to resolve disputes in cases where unexpected savings occur mid-contract.


New Medit ◽  
2020 ◽  
Vol 19 (3) ◽  
Author(s):  
Houcine JEDER ◽  
Zina DBOUBA ◽  
Ayoub FOUZAI

Good management of water resources requires a good allocation of their availability, especially in public irrigated schemes in Tunisia. This paper contributes to a better reallocation of available water resources at the farm and regional levels. A case study was discussed in the Kalâa Kebira region, in the center-east of Tunisia. Regional models based on aggregation and the possibility of water transfer between two irrigated schemes was tested. The results show that a good seasonal allocation is possible with a total regional exchange of 9.60% m3 of water available between these two schemes. This reallocation is beneficial at the regional level, recording an increase of 2.12% in agricultural income and less beneficial, except for farms that are less competitive, in terms of use of water resources. This reallocation also allows for cultural diversity and specification of agricultural farms. Competitiveness in the water use, diversification and specification of agricultural production systems help to preserve natural resources but they also help to satisfy demand of the regional market.Good management of water resources requires a good allocation of their availability, especially in public irrigated schemes in Tunisia. This paper contributes to a better reallocation of available water resources at the farm and regional levels. A case study was discussed in the Kalâa Kebira region, in the center-east of Tunisia. Regional models based on aggregation and the possibility of water transfer between two irrigated schemes was tested. The results show that a good seasonal allocation is possible with a total regional exchange of 9.60% m3 of water available between these two schemes. This reallocation is beneficial at the regional level, recording an increase of 2.12% in agricultural income and less beneficial, except for farms that are less competitive, in terms of use of water resources. This reallocation also allows for cultural diversity and specification of agricultural farms. Competitiveness in the water use, diversification and specification of agricultural production systems help to preserve natural resources but they also help to satisfy demand of the regional market.


Water SA ◽  
2020 ◽  
Vol 46 (1 January) ◽  
Author(s):  
HE Jacobs ◽  
JL Du Plessis ◽  
Nicole Nel ◽  
S Gugushe ◽  
S Levin

Baselines are often employed in shared water saving contracts for estimating water savings after some type of intervention by the water service company. An adjustment to the baseline may become necessary under certain conditions. Earlier work has described a number of relatively complex methods for baseline determination and adjustment, but application in regions faced with relatively limited data becomes problematic. If the adjustment were determined before finalising the contractual matters, it would be possible to gather the required data in order to determine the adjustment. However, in cases where no adjustment was fixed prior to the contract, a method is required to determine an adjustment mid-contract based on whatever data are available at the time. This paper presents a methodology for baseline adjustment in an existing shared water savings contract and explains how adjustment could be determined mid-contract, under conditions of limited data. The adjustment compensates for expected reduced water consumption due to external influences induced by serious water restrictions, typically introduced during periods of drought. The fundamental principle underpinning the baseline adjustment methodology presented in this paper involved segregating real water losses from the actual consumption of end-users, preferably by analysing the minimum night flow. In the absence of recorded night flows, an alternative procedure involving the minimum monthly consumption pre- and post-baseline was employed. The baseline adjustment method was subsequently applied in a South African case study, reported on separately. This technique is helpful because adjustments could be determined without adding unnecessary complexity or cost, and provides a means to resolve disputes in cases where unexpected savings occur mid-contract.


2016 ◽  
Vol 1 (1) ◽  
pp. 60-67
Author(s):  
Dwi Prasetyani ◽  
Akhmad Daerobi

Objective - This research is built on the argument that providing farmers with more access to natural resources can reduce poverty and so increase production in farming, particularly in the case of Wonogiri. Methodology/Technique - The method of analysis used for this research is the IRAP (Integrated Rural Accessibility Planning) method which was developed by the International Labour Organization (ILO) and the government agencies of Africa and Asia. Findings - Based on the calculation of access, it is noted that priority problems of access to productive resources can be resolved by focusing on four factors. First is Education - Strategies that can be implemented is the construction of new schools, particularly junior and senior high schools. Second is Health - Strategies that can be implemented is to increase farmers' access to water resources and to increase the number of general practitioners available such as specialists and dentists. Third is Agriculture - Strategies that can be done is to improve existing markets, add new markets, and develop new farmer groups. Fourth is Support - Strategies that can be done is by building layers of foundation and paving stones and casting roads on the remaining land. Of utmost importance is Education. Novelty - New found strategies that can be implemented include the construction of new schools for poor farmers. Type of Paper: Empirical Keywords: Dryland Farmers, Productive Resources, Wonogiri, IRAP, Access, Strategy.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 239 ◽  
Author(s):  
Vasilis Kanakoudis ◽  
Stavroula Tsitsifli

Real water losses in water distribution systems may well be considered a potential water resource, as the significant water volumes being wasted through these physical losses should be replaced eventually. Advanced tools and strategies can be used for the efficient and sustainable management of water resources toward circular economy. The present Special Issue presents new perspectives for water networks management. The 10 peer-reviewed papers collected in this Special Issue have been grouped in two categories—drinking water supply systems and water resources and irrigation systems. These papers are being briefly presented in this Editorial.


10.29007/79rg ◽  
2018 ◽  
Author(s):  
Luísa Ribeiro ◽  
Joaquim Sousa ◽  
João Muranho ◽  
Alfeu Sá Marques

Water losses are a major concern for water companies, mostly due to their economical, technical, social and environmental negative impacts.Unreported leaks are a major cause of water losses in water distribution networks (WDNs) and they are difficult to locate, particularly in plastic pipes, large diameters and low pressure conditions. The location of these leaks is very time consuming and requires specialized human resources, using sophisticated and costly acoustic equipment.The use of modelling and optimization tools, supported by flow and pressure measurements, is showing to be a challenging alternative to the traditional procedure. This paper presents the application of the methodology proposed in Ribeiro L. S., 2012; Ribeiro L. S., 2015; Sousa, 2015 to a real WDN, highlighting the major difficulties faced when dealing with real world conditions, namely gathering and checking data, and building and calibrating the water distribution model.The results obtained in this case study show that this approach is very promising, encouraging future applications and developments.


Sign in / Sign up

Export Citation Format

Share Document