Assimilable organic carbon (AOC) originating from picophytoplankton in drinking water

2006 ◽  
Vol 6 (2) ◽  
pp. 169-176 ◽  
Author(s):  
T. Okuda ◽  
W. Nishijima ◽  
M. Okada

The removal efficiency of conventional drinking water for picophytoplankton and the contribution of picophytoplankton to AOC were investigated in this research. The removal ratio during coagulation–sedimentation step was determined by jar test using PAC (poly-aluminium chloride). Lower coagulation pH showed better picophytoplankton removal in coagulation–sedimentation. The optimum coagulant dosage for picophytoplankton was twice or more than that for turbidity. The removal efficiency of picophytoplankton was 44–60% at lowest pH in water quality standard (5.8) and at an optimum coagulant dosage for turbidity. The removal ratio of picophytoplankton in rapid sand filtration was determined by pilot scale column experiments with sand and anthracite. The average removal percentage was 16.3% without PAC addition and chlorination before sand filtration; on the other hand it was 51.5% with PAC and chlorination. AOC increased by the chlorination of picoplankton including 6,800 cells/L of picophytoplankton was 21 μg-acetateC/L at 0.1 mg/L of residual free chlorine. The AOC was increased by the increase of residual chlorine concentration, and leveled off at 0.3 mg-Cl/L. From the result, the AOC originating from picoplankton (maximum AOC from picophytoplankton) could increase up to 155 μg-acetateC/L in this reservoir. It indicates that the removal of picoplankton (picophytoplankton) in drinking water treatment process is important from the viewpoint of AOC control.

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3275
Author(s):  
Philipp Otter ◽  
Katharina Mette ◽  
Robert Wesch ◽  
Tobias Gerhardt ◽  
Frank-Marc Krüger ◽  
...  

A large variety of Advanced Oxidation Processes (AOPs) to degrade trace organic compounds during water treatment have been studied on a lab scale in the past. This paper presents the combination of inline electrolytic chlorine generation (ECl2) with low pressure UV reactors (UV/ECl2) in order to allow the operation of a chlorine-based AOP without the need for any chlorine dosing. Lab studies showed that from a Free Available Chlorine (FAC) concentration range between 1 and 18 mg/L produced by ECl2 up to 84% can be photolyzed to form, among others, hydroxyl radicals (OH) with an UV energy input of 0.48 kWh/m3. This ratio could be increased to 97% by doubling the UV energy input to 0.96 kWh/m3 and was constant throughout the tested FAC range. Also the achieved radical yield of 64% did not change along the given FAC concentration range and no dependence between pH 6 and pH 8 could be found, largely simplifying the operation of a pilot scale system in drinking water treatment. Whereas with ECl2 alone only 5% of benzotriazoles could be degraded, the combination with UV improved the degradation to 89%. Similar results were achieved for 4-methylbenzotriazole, 5-methylbenzotriazole and iomeprol. Oxipurinol and gabapentin were readily degraded by ECl2 alone. The trihalomethanes values were maintained below the Germany drinking water standard of 50 µg/L, provided residual chlorine concentrations are kept within the permissible limits. The here presented treatment approach is promising for decentralized treatment application but requires further optimization in order to reduce its energy requirements.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2053
Author(s):  
Oksana Golovko ◽  
Luana de Brito Anton ◽  
Claudia Cascone ◽  
Lutz Ahrens ◽  
Elin Lavonen ◽  
...  

Granulated active carbon (GAC) is commonly used as a chemical barrier for the removal of organic micropollutants (OMPs) in drinking water treatment plants (DWTPs). However, little is known about the impact of dissolved organic carbon (DOC) and its long-term performance with regard to OMP removal efficiency. This study examined the performance of two GAC types (Norit 830W and Filtrasorb 400) in the removal of OMPs and DOC from natural lake water, in pilot-scale and full-scale tests run for almost one year. Potential early warning indicators of the exhaustion of GAC sorption capacity were also evaluated. The seven OMPs investigated (carbamazepine, lamotrigine, cetirizine, fexofenadine, oxazepam, fluconazole and N,N-diethyl-meta-toluamide (DEET)) all showed decreasing removal efficiencies after ~20,000 bed volumes (BV) in the pilot-scale Norit 830W and Filtrasorb 400 columns. However, columns with an 18-min empty bed contact time (EBCT) showed better performances than columns with 6-min EBCT. DEET was the OMP adsorbed most weakly. We found that DOC concentrations, methylene blue sorption kinetics, UV and fluorescence did not sufficiently explain the OMP breakthrough in the GAC columns. We concluded that carbamazepine, lamotrigine and fexofenadine can be used as indicators of decreasing GAC adsorption performance, due to their later breakthrough. Based on the results, UV and fluorescence removal could be used for the early detection of declining DOC removal, and online solid-phase extraction (SPE)–liquid chromatography–tandem mass spectrometry (SPE-LC-MS/MS) could be used for the early detection of OMPs in drinking water.


2006 ◽  
Vol 6 (2) ◽  
pp. 125-130
Author(s):  
C.-H. Hung ◽  
K.-H. Tsai ◽  
Y.-K. Su ◽  
C.-M. Liang ◽  
M.-H. Su ◽  
...  

Due to the extensive application of artificial nitrogen-based fertilizers on land, groundwater from the central part of Taiwan faces problems of increasing concentrations of nitrate, which were measured to be well above 30 mg/L all year round. For meeting the 10 mg/L nitrate standard, optimal operations for a heterotrophic denitrification pilot plant designed for drinking water treatment was investigated. Ethanol and phosphate were added for bacteria growing on anthracite to convert nitrate to nitrogen gas. Results showed that presence of high dissolved oxygen (around 4 mg/L) in the source water did not have a significantly negative effect on nitrogen removal. When operated under a C/N ratio of 1.88, which was recommended in the literature, nitrate removal efficiency was measured to be around 70%, sometimes up to 90%. However, the reactor often underwent severe clogging problems. When operated under C/N ratio of 1.0, denitrification efficiency decreased significantly to 30%. Finally, when operated under C/N ratio of 1.5, the nitrate content of the influent was almost completely reduced at the first one-third part of the bioreactor with an overall removal efficiency of 89–91%. Another advantage for operating with a C/N ratio of 1.5 is that only one-third of the biosolids was produced compared to a C/N value of 1.88.


2001 ◽  
Vol 1 ◽  
pp. 39-43 ◽  
Author(s):  
V. Zitko

Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.


2013 ◽  
Vol 6 (1) ◽  
pp. 1-10 ◽  
Author(s):  
A. Grefte ◽  
M. Dignum ◽  
E. R. Cornelissen ◽  
L. C. Rietveld

Abstract. To guarantee a good water quality at the customers tap, natural organic matter (NOM) should be (partly) removed during drinking water treatment. The objective of this research was to improve the biological stability of the produced water by incorporating anion exchange (IEX) for NOM removal. Different placement positions of IEX in the treatment lane (IEX positioned before coagulation, before ozonation or after slow sand filtration) and two IEX configurations (MIEX® and fluidized IEX (FIX)) were compared on water quality as well as costs. For this purpose the pre-treatment plant at Loenderveen and production plant Weesperkarspel of Waternet were used as a case study. Both, MIEX® and FIX were able to remove NOM (mainly the HS fraction) to a high extent. NOM removal can be done efficiently before ozonation and after slow sand filtration. The biological stability, in terms of assimilable organic carbon, biofilm formation rate and dissolved organic carbon, was improved by incorporating IEX for NOM removal. The operational costs were assumed to be directly dependent of the NOM removal rate and determined the difference between the IEX positions. The total costs for IEX for the three positions were approximately equal (0.0631 € m−3), however the savings on following treatment processes caused a cost reduction for the IEX positions before coagulation and before ozonation compared to IEX positioned after slow sand filtration. IEX positioned before ozonation was most cost effective and improved the biological stability of the treated water.


Sign in / Sign up

Export Citation Format

Share Document