The biological safety of distribution systems following UV disinfection in rural areas in Beijing, China

2013 ◽  
Vol 13 (3) ◽  
pp. 854-863 ◽  
Author(s):  
Wenjun Sun ◽  
Wenjun Liu ◽  
Lifeng Cui ◽  
Leibin Liu

In rural areas, UV disinfection has a great potential for drinking water treatment because of the ability to achieve target disinfection levels and the ease of operation and maintenance; however, UV disinfection provides no disinfection residual to the water distribution system. This study examines the biological safety of rural water distribution systems following UV disinfection. The results showed that in all the tested villages, heterotrophic plate counts (HPC) were below 500 colony-forming units (CFU)/mL and total bacterial counts (TBC) were below 100 CFU/mL. Both meet the drinking water standard in China. The HPC concentration was related to the water temperature, the assimilable organic carbon (AOC) and water distribution system conditions. Total coliforms were detectable at some water distribution system sampling points in two out of eight villages.

2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Vicente Gomez-Alvarez ◽  
Randy P. Revetta

We report here the draft genome sequences of four Mycobacterium chelonae strains from biofilms subjected to a “chlorine burn” in a chloraminated drinking water distribution system simulator. These opportunistic pathogens have been detected in hospital and municipal water distribution systems, in which biofilms have been recognized as an important factor for their persistence.


2002 ◽  
Vol 68 (11) ◽  
pp. 5318-5325 ◽  
Author(s):  
Corinne Le Dantec ◽  
Jean-Pierre Duguet ◽  
Antoine Montiel ◽  
Nadine Dumoutier ◽  
Sylvie Dubrou ◽  
...  

ABSTRACT The frequency of recovery of atypical mycobacteria was estimated in two treatment plants providing drinking water to Paris, France, at some intermediate stages of treatment. The two plants use two different filtration processes, rapid and slow sand filtration. Our results suggest that slow sand filtration is more efficient for removing mycobacteria than rapid sand filtration. In addition, our results show that mycobacteria can colonize and grow on granular activated carbon and are able to enter distribution systems. We also investigated the frequency of recovery of mycobacteria in the water distribution system of Paris (outside buildings). The mycobacterial species isolated from the Paris drinking water distribution system are different from those isolated from the water leaving the treatment plants. Saprophytic mycobacteria (present in 41.3% of positive samples), potentially pathogenic mycobacteria (16.3%), and unidentifiable mycobacteria (54.8%) were isolated from 12 sites within the Paris water distribution system. Mycobacterium gordonae was preferentially recovered from treated surface water, whereas Mycobacterium nonchromogenicum was preferentially recovered from groundwater. No significant correlations were found among the presence of mycobacteria, the origin of water, and water temperature.


Water distribution system is a network that supplies water to all the consumers through different means. Proper means of providing water to houses without compromising in quantity and quality is always a challenge. As it is a huge network keeping track of the utilization is difficult for the utility. Hence through this project we come up with a solution to solve this issue. Current technologies like Low Power Wide Area Networks, LoRa and sensor deployment techniques have been in research and were also tested in few rural areas but issues due to hardware deployment and large scale real time implementation was a challenge hence through this system we aim to create and simulate a real time scenario to test a sensor network model that could be implemented in large scale further. This project aims in building a wireless sensor network model for a smart water distribution system. In this system there is bidirectional communication between the consumer and the utility. Each house has a meter through which the amount of water consumed is sent to the utility board. The data has two fields containing the house ID and the data (water consumed); it is being sent to the data collection unit (DCU) which in-turn sends it to the central server so that the consumption is monitored in real time. All this is simulated using NETSIM and MATLAB


2021 ◽  
Vol 2139 (1) ◽  
pp. 012013
Author(s):  
C A Bonilla-Granados ◽  
N J Cely-Calixto ◽  
G A Carrillo Soto

Abstract Drinking-water distribution systems are generally designed with methodologies based on trial-and-error tests, which generate feasible results. However, these trials are not the most economical and reliable solution since they do not consider the optimization of the network. For the present work, the hydraulic model of the drinking water distribution network of San José de Cúcuta, Colombia, was optimized by applying the concept of resilience rate and minimum cost. The development of the work consisted of the hydraulic modeling of the physical components of the network in EPANET software, as well as the application of calculations of the connectivity coefficient and the unitary power of each section. With the data obtained from the modeling and calculations, the physical parameters were optimized, and the cost-benefit ratio was estimated. It was found that the current drinking water distribution system does not have a power surplus to overcome a system failure. The optimization increased the total energy surplus of the network (261%) and the resilience rate (585%). Also, the connectivity coefficient was improved with an average value of 0.95. The hydraulic optimization methodology applied resulted in a network resilient to system failures.


2019 ◽  
Vol 5 (10) ◽  
pp. 1689-1698
Author(s):  
Xu Ma ◽  
Guiwei Li ◽  
Ying Yu ◽  
Ruya Chen ◽  
Yao Zhang ◽  
...  

Discoloration problems have occurred in drinking water distribution systems continuously for several years in a rural area of eastern China.


2007 ◽  
Vol 73 (11) ◽  
pp. 3755-3758 ◽  
Author(s):  
Talis Juhna ◽  
Dagne Birzniece ◽  
Janis Rubulis

ABSTRACT The effect of phosphorus addition on survival of Escherichia coli in an experimental drinking water distribution system was investigated. Higher phosphorus concentrations prolonged the survival of culturable E. coli in water and biofilms. Although phosphorus addition did not affect viable but not culturable (VBNC) E. coli in biofilms, these structures could act as a reservoir of VBNC forms of E. coli in drinking water distribution systems.


2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Vicente Gomez-Alvarez ◽  
Stacy Pfaller ◽  
Randy P. Revetta

We report the draft genomes of two Sphingopyxis sp. strains isolated from a chloraminated drinking water distribution system simulator. Both strains are ubiquitous residents and early colonizers of water distribution systems. Genomic annotation identified a class 1 integron ( intI1 ) gene associated with sulfonamide ( sul1 ) and puromycin ( pac ) antibiotic resistance genes.


2006 ◽  
Vol 72 (9) ◽  
pp. 5864-5869 ◽  
Author(s):  
Elizabeth D. Hilborn ◽  
Terry C. Covert ◽  
Mitchell A. Yakrus ◽  
Stephanie I. Harris ◽  
Sandra F. Donnelly ◽  
...  

ABSTRACT There is evidence that drinking water may be a source of infections with pathogenic nontuberculous mycobacteria (NTM) in humans. One method by which NTM are believed to enter drinking water distribution systems is by their intracellular colonization of protozoa. Our goal was to determine whether we could detect a reduction in the prevalence of NTM recovered from an unfiltered surface drinking water system after the addition of ozonation and filtration treatment and to characterize NTM isolates by using molecular methods. We sampled water from two initially unfiltered surface drinking water treatment plants over a 29-month period. One plant received the addition of filtration and ozonation after 6 months of sampling. Sample sites included those at treatment plant effluents, distributed water, and cold water taps (point-of-use [POU] sites) in public or commercial buildings located within each distribution system. NTM were recovered from 27% of the sites. POU sites yielded the majority of NTM, with >50% recovery despite the addition of ozonation and filtration. Closely related electrophoretic groups of Mycobacterium avium were found to persist at POU sites for up to 26 months. Water collected from POU cold water outlets was persistently colonized with NTM despite the addition of ozonation and filtration to a drinking water system. This suggests that cold water POU outlets need to be considered as a potential source of chronic human exposure to NTM.


2005 ◽  
Vol 3 (2) ◽  
pp. 109-127 ◽  
Author(s):  
Ellen J. Lee ◽  
Kellogg J. Schwab

Rapidly growing populations and migration to urban areas in developing countries has resulted in a vital need for the establishment of centralized water systems to disseminate potable water to residents. Protected source water and modern, well-maintained drinking water treatment plants can provide water adequate for human consumption. However, ageing, stressed or poorly maintained distribution systems can cause the quality of piped drinking water to deteriorate below acceptable levels and pose serious health risks. This review will outline distribution system deficiencies in developing countries caused by: the failure to disinfect water or maintain a proper disinfection residual; low pipeline water pressure; intermittent service; excessive network leakages; corrosion of parts; inadequate sewage disposal; and inequitable pricing and usage of water. Through improved research, monitoring and surveillance, increased understanding of distribution system deficiencies may focus limited resources on key areas in an effort to improve public health and decrease global disease burden.


2010 ◽  
Vol 76 (16) ◽  
pp. 5631-5635 ◽  
Author(s):  
Pei-Ying Hong ◽  
Chiachi Hwang ◽  
Fangqiong Ling ◽  
Gary L. Andersen ◽  
Mark W. LeChevallier ◽  
...  

ABSTRACT The applicability of 454 pyrosequencing to characterize bacterial biofilm communities from two water meters of a drinking water distribution system was assessed. Differences in bacterial diversity and composition were observed. A better understanding of the bacterial ecology of drinking water biofilms will allow for effective management of water quality in distribution systems.


Sign in / Sign up

Export Citation Format

Share Document