Prediction of side weir discharge coefficient by support vector machine technique

2016 ◽  
Vol 16 (4) ◽  
pp. 1002-1016 ◽  
Author(s):  
Hazi Mohammad Azamathulla ◽  
Amir Hamzeh Haghiabi ◽  
Abbas Parsaie

Side weirs have many possible applications in the field of hydraulic engineering. They are also considered an important structure in hydro systems. In this study, the support vector machine (SVM) technique was employed to predict the side weir discharge coefficient. The performance of SVM was compared with other types of soft computing techniques such as artificial neural networks (ANN) and adaptive neuro fuzzy inference systems (ANFIS). While ANN and ANFIS models provided a good prediction performance, the SVM model with a radial basis function kernel function outperforms them. The best SVM model was developed with a gamma coefficient and epsilon of 15 and 0.3, respectively. The SVM yielded a coefficient of determination (R2) equal to 0.96 and 0.93 for the training and testing data. Sensitivity analyses of the ANN, ANFIS and SVM models showed that the Froude number and ratio of weir length to the flow depth upstream of the weir are the most effective parameters for the prediction of the discharge coefficient.

Author(s):  
Mahdi Majedi-Asl ◽  
Mehdi Foladipanah ◽  
Venkat Arun ◽  
Ravi Prakash Tripathi

Abstract As a remarkable parameter, the discharge coefficient (Cd) plays an important role in determining weirs' passing capacity. In this research work, the support vector machine (SVM) and the gene expression programming (GEP) algorithms were assessed to predict Cd of piano key weir (PKW), rectangular labyrinth weir (RLW), and trapezoidal labyrinth weir (TLW) with gathered experimental data set. Using dimensional analysis, various combinations of hydraulic and geometric non-dimensional parameters were extracted to perform simulation. The superior model for the SVM and the GEP predictor for PKW, RLW, and TLW included , and respectively. The results showed that both algorithms are potential in predicting discharge coefficient, but the coefficient of determination (RMSE, R2, Cd(DDR)max) illustrated the superiority of the GEP performance over the SVM. The results of the sensitivity analysis determined the highest effective parameters for PKW, RLW, and TLW in predicting discharge coefficients are , , and Fr respectively.


2019 ◽  
Vol 259 ◽  
pp. 02007 ◽  
Author(s):  
Amir Falamarzi ◽  
Sara Moridpour ◽  
Majidreza Nazem ◽  
Reyhaneh Hesami

Gradual deviation in track gauge of tram systems resulted from tram traffic is unavoidable. Tram gauge deviation is considered as an important parameter in poor ride quality and the risk of train derailment. In order to decrease the potential problems associated with excessive gauge deviation, implementation of preventive maintenance activities is inevitable. Preventive maintenance operation is a key factor in development of sustainable rail transport infrastructure. Track degradation prediction modelling is the basic prerequisite for developing efficient preventive maintenance strategies of a tram system. In this study, the data sets of Melbourne tram network is used and straight rail tracks sections are examined. Two model types including plain Support Vector Machine (SVM) and SVM optimised by Genetic Algorithm (GA- SVM) have been applied to the case study data. Two assessment indexes including Mean Squared Error (MSE) and the coefficient of determination (R2) are employed to evaluate the performance of the proposed models. Based on the results, GA-SVM model produces more accurate outcomes than plain SVM model.


2018 ◽  
Vol 1 (1) ◽  
pp. 120-130 ◽  
Author(s):  
Chunxiang Qian ◽  
Wence Kang ◽  
Hao Ling ◽  
Hua Dong ◽  
Chengyao Liang ◽  
...  

Support Vector Machine (SVM) model optimized by K-Fold cross-validation was built to predict and evaluate the degradation of concrete strength in a complicated marine environment. Meanwhile, several mathematical models, such as Artificial Neural Network (ANN) and Decision Tree (DT), were also built and compared with SVM to determine which one could make the most accurate predictions. The material factors and environmental factors that influence the results were considered. The materials factors mainly involved the original concrete strength, the amount of cement replaced by fly ash and slag. The environmental factors consisted of the concentration of Mg2+, SO42-, Cl-, temperature and exposing time. It was concluded from the prediction results that the optimized SVM model appeared to perform better than other models in predicting the concrete strength. Based on SVM model, a simulation method of variables limitation was used to determine the sensitivity of various factors and the influence degree of these factors on the degradation of concrete strength.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shengpu Li ◽  
Yize Sun

Ink transfer rate (ITR) is a reference index to measure the quality of 3D additive printing. In this study, an ink transfer rate prediction model is proposed by applying the least squares support vector machine (LSSVM). In addition, enhanced garden balsam optimization (EGBO) is used for selection and optimization of hyperparameters that are embedded in the LSSVM model. 102 sets of experimental sample data have been collected from the production line to train and test the hybrid prediction model. Experimental results show that the coefficient of determination (R2) for the introduced model is equal to 0.8476, the root-mean-square error (RMSE) is 6.6 × 10 (−3), and the mean absolute percentage error (MAPE) is 1.6502 × 10 (−3) for the ink transfer rate of 3D additive printing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruolan Zeng ◽  
Jiyong Deng ◽  
Limin Dang ◽  
Xinliang Yu

AbstractA three-descriptor quantitative structure–activity/toxicity relationship (QSAR/QSTR) model was developed for the skin permeability of a sufficiently large data set consisting of 274 compounds, by applying support vector machine (SVM) together with genetic algorithm. The optimal SVM model possesses the coefficient of determination R2 of 0.946 and root mean square (rms) error of 0.253 for the training set of 139 compounds; and a R2 of 0.872 and rms of 0.302 for the test set of 135 compounds. Compared with other models reported in the literature, our SVM model shows better statistical performance in a model that deals with more samples in the test set. Therefore, applying a SVM algorithm to develop a nonlinear QSAR model for skin permeability was achieved.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Pijush Samui

The main objective of site characterization is the prediction of in situ soil properties at any half-space point at a site based on limited tests. In this study, the Support Vector Machine (SVM) has been used to develop a three dimensional site characterization model for Bangalore, India based on large amount of Standard Penetration Test. SVM is a novel type of learning machine based on statistical learning theory, uses regression technique by introducing ε-insensitive loss function. The database consists of 766 boreholes, with more than 2700 field SPT values () spread over 220 sq km area of Bangalore. The model is applied for corrected () values. The three input variables (, , and , where , , and are the coordinates of the Bangalore) were used for the SVM model. The output of SVM was the data. The results presented in this paper clearly highlight that the SVM is a robust tool for site characterization. In this study, a sensitivity analysis of SVM parameters (σ, , and ε) has been also presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hongbo Zhao ◽  
Zenghui Huang ◽  
Zhengsheng Zou

Stress-strain relationship of geomaterials is important to numerical analysis in geotechnical engineering. It is difficult to be represented by conventional constitutive model accurately. Artificial neural network (ANN) has been proposed as a more effective approach to represent this complex and nonlinear relationship, but ANN itself still has some limitations that restrict the applicability of the method. In this paper, an alternative method, support vector machine (SVM), is proposed to simulate this type of complex constitutive relationship. The SVM model can overcome the limitations of ANN model while still processing the advantages over the traditional model. The application examples show that it is an effective and accurate modeling approach for stress-strain relationship representation for geomaterials.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 489
Author(s):  
Fadi Almohammed ◽  
Parveen Sihag ◽  
Saad Sh. Sammen ◽  
Krzysztof Adam Ostrowski ◽  
Karan Singh ◽  
...  

In this investigation, the potential of M5P, Random Tree (RT), Reduced Error Pruning Tree (REP Tree), Random Forest (RF), and Support Vector Regression (SVR) techniques have been evaluated and compared with the multiple linear regression-based model (MLR) to be used for prediction of the compressive strength of bacterial concrete. For this purpose, 128 experimental observations have been collected. The total data set has been divided into two segments such as training (87 observations) and testing (41 observations). The process of data set separation was arbitrary. Cement, Aggregate, Sand, Water to Cement Ratio, Curing time, Percentage of Bacteria, and type of sand were the input variables, whereas the compressive strength of bacterial concrete has been considered as the final target. Seven performance evaluation indices such as Correlation Coefficient (CC), Coefficient of determination (R2), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Bias, Nash-Sutcliffe Efficiency (NSE), and Scatter Index (SI) have been used to evaluate the performance of the developed models. Outcomes of performance evaluation indices recommend that the Polynomial kernel function based SVR model works better than other developed models with CC values as 0.9919, 0.9901, R2 values as 0.9839, 0.9803, NSE values as 0.9832, 0.9800, and lower values of RMSE are 1.5680, 1.9384, MAE is 0.7854, 1.5155, Bias are 0.2353, 0.1350 and SI are 0.0347, 0.0414 for training and testing stages, respectively. The sensitivity investigation shows that the curing time (T) is the vital input variable affecting the prediction of the compressive strength of bacterial concrete, using this data set.


2020 ◽  
Vol 14 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Hai-Bang Ly ◽  
Binh Thai Pham

Background: Shear strength of soil, the magnitude of shear stress that a soil can maintain, is an important factor in geotechnical engineering. Objective: The main objective of this study is dedicated to the development of a machine learning algorithm, namely Support Vector Machine (SVM) to predict the shear strength of soil based on 6 input variables such as clay content, moisture content, specific gravity, void ratio, liquid limit and plastic limit. Methods: An important number of experimental measurements, including more than 500 samples was gathered from the Long Phu 1 power plant project’s technical reports. The accuracy of the proposed SVM was evaluated using statistical indicators such as the coefficient of correlation (R), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) over a number of 200 simulations taking into account the random sampling effect. Finally, the most accurate SVM model was used to interpret the prediction results due to Partial Dependence Plots (PDP). Results: Validation results showed that SVM model performed well for prediction of soil shear strength (R = 0.9 to 0.95), and the moisture content, liquid limit and plastic limit were found as the three most affecting features to the prediction of soil shear strength. Conclusion: This study might help in quick and accurate prediction of soil shear strength for practical purposes in civil engineering.


Sign in / Sign up

Export Citation Format

Share Document