scholarly journals Metabolism-based modelling for performance assessment of a water supply system: a case study of Reggio Emilia, Italy

2016 ◽  
Vol 16 (5) ◽  
pp. 1221-1230 ◽  
Author(s):  
T. Liserra ◽  
K. Benzedian ◽  
R. Ugarelli ◽  
R. Bertozzi ◽  
V. Di Federico ◽  
...  

A new class of conceptual simulation tools, as a complement to physically based models, is becoming available to simulate the whole water cycle in urban areas for strategic planning, often involving the allocation of a great amount of financial resources. These simulation tools are required to estimate the impact of the today's decisions on the system performance over the next decades and to compare and rank different intervention strategies. To achieve this, this paper aims to build the metabolism-based modelling of a real water supply system using the recently developed WaterMet2 model in order to evaluate long-term performance metrics for possible intervention strategies. This metabolism-based approach was demonstrated for evaluation of the water supply system of Reggio Emilia, Italy, which is one of the demonstration case studies in the EU TRUST (TRansitions to the Urban water Services of Tomorrow) project. Based on the strains imposed by pressing challenges (here population growth) two intervention strategies were analysed. The results obtained show that the built and calibrated WaterMet2 model allows a broader understanding of the impacts of alternative intervention strategies taking into account multidimensional aspects of the sustainability beside conventional service performance.

2017 ◽  
Vol 37 (1) ◽  
pp. 58 ◽  
Author(s):  
Jure Margeta ◽  
Bojan Đurin

Paper describes and analyses new and innovative concept for possible integration of solar photovoltaic (PV) energy in urban water supply system (UWSS). Proposed system consists of PV generator and invertor, pump station and water reservoir. System is sized in such a manner that every his part is sized separately and after this integrated into a whole. This integration is desirable for several reasons, where the most important is the achievement of the objectives of sustainable living in urban areas i.e. achieving of sustainable urban water supply system. The biggest technological challenge associated with the use of solar, wind and other intermittent renewable energy sources RES is the realization of economically and environmentally friendly electric energy storage (EES). The paper elaborates the use of water reservoires in UWSS as EES. The proposed solution is still more expensive than the traditional and is economically acceptable today in the cases of isolated urban water system and special situations. Wider application will depend on the future trends of energy prices, construction costs of PV generators and needs for CO2 reduction by urban water infrastructure.


2020 ◽  
Vol 4 (1) ◽  
pp. 34-42
Author(s):  
Touseef Ahmad Babar ◽  
Shahbaz Nasir Khan ◽  
Hafiz Muhammad Safder Khan ◽  
Abdul Nasir ◽  
Muhammad Umar

AbstractWater is indispensable for human life and without water, life cannot exist on earth. Every person required 33 to 35-gallon water per day for drinking and demotic purpose. But due to lack of quality, inefficient water supply designs, intermixing of sewage water and unlined sewage water system, quality of water is deteriorated specially in recent decades and affecting a number of people. In present study, it was inevitable to design a water supply system for selected area to provide safe water supply design for a small community. For this purpose, a study area was selected named as chak.no. 253 RB, Samundri Road Faisalabad. The existing water supply system of the village was built 30 years ago with the problems of leaky pipes, mixing of sewerage water with drinking water was causing water-borne diseases like Diarrhea, Cholera, Giardiasis, Typhoid fever, Schistosomiasis. A computer software abbreviated as EPANET (Environment protection agency network) was used to design a water supply system of the area providing input parameters to the software. For this a profiling survey was conducted to determine the length of pipes and the elevation of each junction. The other input parameters such as the diameter of pipes, pipe network map, head losses were provided. Conclusively, EPANET gave a detailed water supply system plan for specific design period. By adopting this design provided by detailed surveys of the area and EPANET will help to control intermixing of sewage water which ultimately improves the quality of water. The new design is based on technology by using modern techniques (Software). It will provide save and continue supply of water to community. It will also reduce the cost of water billing, leakage, decrease the diseases rate and improve the life standard of people’s lives in that area.


Water Policy ◽  
2021 ◽  
Author(s):  
Md. Nasif Ahsan ◽  
Sheikh Hadiujjaman ◽  
Md. Sariful Islam ◽  
Nishad Nasrin ◽  
Mukta Akter ◽  
...  

Abstract Discontentment with a piped supply system of drinking water has become a significant concern in Bangladesh's urban areas in recent years, necessitating the improvement of different aspects of the system in question. Therefore, by conducting a discrete choice experiment on 115 households out of a systematically selected 161 households, this study aims to estimate the willingness to pay (WTP) for an improved safe drinking water supply by considering the trade-offs made by urban dwellers for the proposed improvements to an existing water supply system in the Khulna City Corporation (KCC) area of Bangladesh. The primary results show that the total WTP of households is estimated at BDT 243.6 (≈US$ 2.87) per month, implying that respondents are ready to pay for improvements to the water supply attributes of water quality, regularity of supply, water pressure in taps, and filtering. A revenue stream for an improved water supply system is also being developed, suggesting that investment in improving the system would be a ‘no-regret’ decision and economically sustainable.


2021 ◽  
Vol 7 (1) ◽  
pp. 230-237
Author(s):  
J. Shan ◽  
J. Li ◽  
Z. Guo ◽  
A. Levtsev

The hot water supply system is one of the important components of the water supply and drainage system of high-rise civil buildings. With the development of the national economy and the improvement of people’s living standards, people’s requirements for popularizing hot water supply and improving hot water supply technology are becoming more and more urgent. In the process of hot water supply, the flow pressure of the pipeline is increased, and the purpose of hot water supply in high-rise buildings is achieved. The experiment analyzes the effect of the pressure ratio on the pipeline in front of the accumulator and the impact valve on the flow of coolant through the check valve. First, through the periodic opening and closing of the shock valve, the pressure continues to rise and fall, and the spring hose exhibits periodic pulsation. The effects of different pressure ratios on pipeline pressure and flow rate are studied, and the data of simulation calculation and actual measurement are analyzed through experiments. The research results have practical significance for improving the water supply efficiency of the hot water supply system of high-rise buildings.


2017 ◽  
Vol 1 (17) ◽  
Author(s):  
Nedim Suljić ◽  
Jasmin Hrnjadović

The water supply system is a set of facilities related to a functional unit with the primary aim ofensuring sufficient quantities of quality water by the most economical way. Design and implementationof such systems requires extensive previous research and analysis aimed at finding the optimal solutionof water supply system.This paper presents an analysis of the pressure pipeline of the water supply system in which discussedseveral alternatives with different input parameters. It is shown the influence of the position and thenumber of tanks in the system on the basic parameters such as a pressure in the pipeline, power of pumpunits and so on. It's analyzed the impact of changes in diameter of the pipe to the hydraulic parameters,and also to the initial and operating costs of the system. The main aim of the complete analysis is toestablish a uniform depending of the analyzed elements in the system and finding the optimalparameters and their relationship that provide the most appropriate solution from the technical andeconomic aspects.


2021 ◽  
Vol 45 ◽  
pp. 101040
Author(s):  
Samuele Spedaletti ◽  
Mosè Rossi ◽  
Gabriele Comodi ◽  
Danilo Salvi ◽  
Massimiliano Renzi

1996 ◽  
Vol 23 (2) ◽  
pp. 347-357 ◽  
Author(s):  
Geneviève Pelletier ◽  
Ronald D. Townsend

The principal objective of this study was to optimize pump scheduling and reservoir releases in the Regional Municipality of Ottawa-Carleton's (RMOC) water supply system with a view to reducing electricity-related operating costs. Pump schedules and reservoir releases for enhanced operation were obtained using a linear programming optimization model that incorporated Ottawa Hydro's electricity tariff structure for "large" users. A second objective was to investigate the impact on system operating costs of increasing (i) reservoir storage capacity, (ii) treatment plant capacity, and (iii) water demand by consumers. This paper (part I) describes the RMOC distribution system and reviews the model development. The next paper (part II) presents the analyses performed for the two study objectives, and important results. Key words: water supply system, pump scheduling, pumping costs, optimization, modelling.


Author(s):  
Gustaf Olsson

Abstract Automation is a collection of a whole set of theories and methods to make a system work automatically as intended, in our case the urban water supply system. A critical feature of automation is the feedback principle: a sensor is measuring a certain variable, e.g. a concentration; a computer tests that the measurement is valid; a computer algorithm calculates and decides what should be corrected; a pump or valve or some other device transforms the decision to action. All of this is untouched by human hand. The ‘intention’, or the goal, must be provided to the controller. The key component of automation is the system that can represent any component or process in the water supply system and even the complete system. Automation technology always must be combined with a true understanding of people at all levels. Otherwise, there is a high risk for misunderstandings and failures. Three categories of problems are highlighted, where automation can contribute: uncertainty, feedback, and complexity. A key challenge is the handling of disturbances. Integrated management of the whole urban water cycle will be required in future urban areas to acquire sustainable operations. Automation is a crucial condition to make integration possible in complex systems.


2019 ◽  
Vol 13 (1) ◽  
pp. 171-179
Author(s):  
Ștefania Chirica ◽  
Mihail Luca ◽  
Iustina Lateș

Abstract Water losses are present in all water supply system pipes. Their parameters and value vary depending on the constructional and functional features of the pipes (diameter, material, pressure, embedding environment, location, position etc.). The phenomenon is present in all water supply systems networks in Romania as well as globally. The water supply pipes within the regional water supply system are located in areas with diversified relief, from plateaus and hills to plains. The studies and researches were carried out in the geographical placement area of the Timişeşti-Iaşi pipeline. The geographic area studied is enclosed in Siret and Prut hydrographic basins. The paper aims to establish a correlation between the detection methods of water leaks from pipes and the areal relief features in Iaşi County. At the same time, it is highlighted the impact of the variation of the geographical relief characteristics on the water loss management on different type of pipes.


Sign in / Sign up

Export Citation Format

Share Document