scholarly journals Effect of photochemical advanced oxidation processes on the formation potential of emerging disinfection by-products in groundwater from part of the Pannonian Basin

2018 ◽  
Vol 19 (5) ◽  
pp. 1388-1395 ◽  
Author(s):  
Jelena Molnar Jazić ◽  
Jasmina Agbaba ◽  
Aleksandra Tubić ◽  
Malcolm Watson ◽  
Tajana Đurkić ◽  
...  

Abstract This study evaluates the effect of photochemical advanced oxidation processes (AOPs) (O3/UV, H2O2/UV and O3/H2O2/UV) on the formation potential (FP) of emerging disinfection by-products including nitrogenous by-products (N-DBPs) and haloketones (HKs) in groundwater from part of the Pannonian Basin (AP Vojvodina, Republic of Serbia). Among the N-DBPs, the haloacetonitrile (HAN) precursor contents were 9.83 ± 0.59 μg/L while precursors of halonitromethanes, particularly trichloronitromethane (TCNM) were not detected. Similarly, precursors of HKs as carbonaceous DBPs were also not detected in raw water. Ozonation alone and the H2O2/UV process with a lower UV dose maximally decomposed HAN precursors (about 70%) while during O3-based AOPs, HANFP varied significantly. Application of UV photolysis and H2O2/UV processes with increasing UV dose doubled the HANFP. Ozone alone, O3/UV and H2O2/UV slightly increased HK formation potential, particularly 1,1-dichloro-2-propanone FP (0.93 ± 0.21 to 2.01 ± 0.37 μg/L). None of the investigated treatments influenced the formation of TCNM precursors. The effect of the applied treatments on bromide incorporation was most evident for HANs.

Author(s):  
Zhangbin Pan ◽  
Xiaokang Zhu ◽  
Guifang Li ◽  
Yongqiang Wang ◽  
Mei Li ◽  
...  

Abstract Halobenzoquinones are disinfection by-products with cytotoxicity, carcinogenicity, and genotoxicity. In this study, we investigated the removal of the HBQ 2,6-dichloro-1,4-benzoquinone (DCBQ) from water using advanced oxidation processes. The removal of DCBQ from water using UV, H2O2, and O3 advanced oxidation processes individually was not ideal with removal rates of 36.1% with a UV dose of 180 mJ/cm2, 32.0% with 2 mg/L H2O2, and 57.9% with 2 mg/L O3. Next, we investigated using the combined UV/H2O2/O3 advanced oxidation process to treat water containing DCBQ. A Box–Behnken design was used to optimize the parameters of the UV/H2O2/O3 process, which gave the following optimum DCBQ removal conditions: UV dose of 180 mJ/cm2, O3 concentration of 0.51 mg/L, and H2O2 concentration of 1.76 mg/L. The DCBQ removal rate under the optimum conditions was 94.3%. We also found that lower humic acid concentrations promoted DCBQ degradation, while higher humic acid concentrations inhibited DCBQ degradation.


RSC Advances ◽  
2016 ◽  
Vol 6 (89) ◽  
pp. 86212-86219 ◽  
Author(s):  
Jasmina Agbaba ◽  
Jelena Molnar Jazić ◽  
Aleksandra Tubić ◽  
Malcolm Watson ◽  
Snežana Maletić ◽  
...  

This study investigates the effects of UV photolysis, ozonation and different advanced oxidation processes (O3/UV, H2O2/UV and O3/H2O2/UV) on the oxidation of groundwater natural organic matter (NOM) and by-product formation.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 612 ◽  
Author(s):  
Juan José Rueda-Márquez ◽  
Irina Levchuk ◽  
Manuel Manzano ◽  
Mika Sillanpää

The application of Fenton-based advanced oxidation processes (AOPs), such as photo-Fenton or electro-Fenton for wastewater treatment have been extensively studied in recent decades due to its high efficiency for the decomposition of persistent organic pollutants. Usually Fenton-based AOPs are used for the degradation of targeted pollutant or group of pollutants, which often leads to the formation of toxic by-products possessing a potential environmental risk. In this work, we have collected and reviewed recent findings regarding the feasibility of Fenton-based AOPs (photo-Fenton, UVC/H2O2, electro-Fenton and galvanic Fenton) for the detoxification of real municipal and industrial wastewaters. More specifically, operational conditions, relevance and suitability of different bioassays for the toxicity assessment of various wastewater types, cost estimation, all of which compose current challenges for the application of these AOPs for real wastewater detoxification are discussed.


2018 ◽  
Vol 4 (9) ◽  
pp. 1345-1360 ◽  
Author(s):  
János Farkas ◽  
Máté Náfrádi ◽  
Tamás Hlogyik ◽  
Bartus Cora Pravda ◽  
Krisztina Schrantz ◽  
...  

The efficiency of UV-photolysis, ozonation, their combination and heterogeneous photocatalysis was investigated and compared in various matrices.


Sign in / Sign up

Export Citation Format

Share Document