Simultaneous Removal of Phosphorus and Nitrogen by Sequencing Batch Reactor Activated Sludge Process

1985 ◽  
Vol 17 (11-12) ◽  
pp. 315-316
Author(s):  
Mitsumasa Okada ◽  
Ryuichi Sudo

Abstract–Phosphorus removal by biological means in continuous-flow aerobic/ anaerobic activated sludge processes is now in a stage of full-scale operations. The similar aerobic/anaerobic treatment is also found in biological processes for nitrogen removal by nitrification followed by denitrification. These processes are successfully applied not only to continuous-flow system but also to sequencing batch reactor (SBR) activated sludge processes, whereas little attempts have been reported on phosphorus removal in SBR activated sludge processes. It is most probable that both phosphorus and nitrogen in addition to organic matter can be removed by the SBR activated sludge processes if aerobic and anaerobic treatments were properly incorporated into a cycle of batch operation. Laboratory scale experiments on aerobic/anaerobic operations of the SBR processes were conducted aiming at simultaneous removal of phosphorus, nitrogen, and organic matter without any addition of chemicals. SBR of 5 1 in working volume was fed with synthetic wastewater in which TOC = 120-200 mg/l, BOD = 200-400 mg/l, total phosphorus = 6-12 mg/1 and total nitrogen = 36-60 mg/1. The following sequence of operations were conducted in a batch cycle; 1) mixing and inflow of wastewater, 2) aeration and mixing, 3) mixing, 4) aeration and mixing, 5) settling and 6) decanting. It was secured from continuous monitoring of dissolved oxygen concentration in the mixed liquor that both anaerobic (stages 1 and 3) and aerobic (stages 2 and 4) treatments were repeated twice in a cycle. In some operations, stages 3 and 4 were omitted for comparison, i.e. anaerobic and aerobic treatments were conducted only once per cycle. The volume of mixed liquor before the inflow of wastewater at the beginning of a cycle (low level) ranged from 33 % to 50 % of that during full volume stages from 2 to 5 (high level). In stage 6, the supernatant was discharged down to the low level and followed by the next cycle of operation. The length of time for a cycle of operation was β h or 9.5 h. Among various types of operations tried, the following sequence was the best in the quality of effluent; 1) 2 h for mixing and inflow, 2) 3 h for aeration and mixing, 3) 3 h for mixing, 4) 20 min for aeration and mixing, 5) 1 h for settling, and 6) 10 min for decanting in a cycle of 9.5 h if influent BOD, total phosphorus and total nitrogen concentrations were 400 mg/1, 12 mg/1 and 60 mg/1, respectively, and BOD loading was 0.68 kg/cu m/d. Total phosphorus and nitrogen concentrations in the effluent were 1.2 mg/1 and 8.0 mg/1, respectively. Similar results were obtained in operations where anaerobic and aerobic treatments were repeated twice in a cycle. In operations where effluent quality was satisfactory, release of phosphorus from the sludge was observed in stage 1. The reactor concentration of filterable total phosphorus (FTP) increased rapidly and its maximum value observed at the end of the stage was ca. 50 mg/1. Phosphorus uptake under aerobic condition (stage 2) decreased FTP to the level of effluent FTP. The luxury uptake of phosphorus by the sludge was noted, i.e. phosphorus content in the sludge ranged from 2.0 % to 4.0 %(w/w). The release of phosphorus from the sludge and subsequent luxury uptake were not significant during stages 3 to 4, hence, further removal of phosphorus was not remarkable. Nitrate nitrogen concentration increased during stage 2 by nitrification. Denitrification was noted both in stages 1 and 3. In stage 1, filterable total organic carbon (FTOC) increased by the inflow of wastewater. It should be, therefore, utilized for denitrification as hydrogen donor. FTOC decreased rapidly after the initiation of aeration in stage 2 and little FTOC remained after the latter half of stage 2. Intracellular organic substances of the sludge, therefore, were regarded to be utilized for denitrification without any addition of chemicals at stage 3. In the best operation, from 50% to 70% out of total nitrogen inflow was removed by denitrification. Effluent BOD was less than 10 mg/l. Although further investigations would be required to determine optimum scheduling in a cycle such as the combination of anaerobic and aerobic periods, the ratio between low and high levels in the reactor, the length of a cycle, and etc. for a given wastewater, the SBR activated sludge process would be a promising wastewater treatment process for simultaneous removal of phosphorus, nitrogen and organiC matter by a single reactor. In spite of complicated operational sequence, full scale automatic operations of SBR activated sludge process would be possible economically even in small-scale plants by using recently advanced microcomputer technology.

1998 ◽  
Vol 38 (1) ◽  
pp. 63-70 ◽  
Author(s):  
H. J. Kiuru ◽  
J. A. Rautiainen

The Laboratory of Environmental Engineering at the Helsinki University of Technology (HUT) carried out in 1991-1995 two successive full-scale research and development projects at the Pihlajaniemi WWTP of Savonlinna concerning biological nutrient removal from municipal wastewater. The projects have resulted in two reports in Finnish with quite large English summaries. This WWTP was constructed originally (1978) as a conventional low-loaded activated sludge plant with the simultaneous precipitation of phosphorus. It was dimensioned for a sludge concentration of 3.5 kgMLSS/m3 in the aeration tanks. Six years later (1984) the plant was fitted with a tertiary stage of flotation filters in order to improve the removal of suspended solids and phosphorus. Nitrification was introduced to the activated sludge process of the plant in 1987. It could be done without any extension by using the sludge concentrations of 6-10 kgMLSS/m3 in the aeration tanks. In that way, this activated sludge process was converted into a very low-loaded one. The process became able to nitrify totally in the circumstances in which the wastewater temperature varies at the range of 4-20°C. The actual hydraulic as well as the BOD7-load of the plant are about 40% of the original dimensioned ones. This activated sludge process of the Pihlajaniemi WWTP was modified in 1991-1993 for nitrogen removal and then in 1994-1995 for both biological phosphorus and nitrogen removal Denitrification was introduced to the process and the simultaneous precipitation of phosphorus in that was replaced by biological phosphorus removal still without any extension of the activated sludge process. The plant has now been operated over four years with biological nutrient removal exploiting the organic carbon compounds of the wastewater. A very little addition of some precipitant is used to improve the biological removal of phosphorus. The chemical and energy cost of the plant has been reduced by some 50% due to the introduction of biological nutrient removal. The BOD7-value of the treated wastewater is mainly less than 3 mg/l (always less than 5 mg/l). The content of total phosphorus in the treated wastewater is usually less than 0.3 mg/l (always less than 0.5 mg/l). The content of total nitrogen in the treated wastewater is mainly 8-12 mg/l. Reductions for BOD7 and total phosphorus over 95% as well as that for total nitrogen about 70% are achieved.


1986 ◽  
Vol 18 (7-8) ◽  
pp. 363-370 ◽  
Author(s):  
M. Okada ◽  
R. Sudo

Laboratory-scale sequencing batch reactor (SBR) activated sludge process was fed with synthetic wastewater to clarify the possibility of simultaneous removal of nitrogen, phosphorus, and organic substances by modifying operational schedule. Anoxic and/or anaerobic reactions in addition to aerobic reactions were introduced into a cycle of batch operation. Simultaneous removal of nitrogen, phosphorus and organic carbon was shown to be possible by the modified operation of SBR into which reactions without aeration (anoxic/anaerobic) were introduced during the fill period. Oxidized nitrogen remaining in the reactor at the end of the former cycle was removed by denitrification during the fill. Anaerobic conditions after the denitrification was completed enhanced phosphorus release from the sludge and the following luxury uptake during aeration removed phosphorus from water. Both extension and reduction of anoxic/anaerobic period in the beginning of a cycle damaged phosphorus removal and sludge settlability. Thus, an optimum length of period for these reactions must be chosen for successful operations. The best length of this period coincided with that of the fill within the range of this study.


1991 ◽  
Vol 24 (3-4) ◽  
pp. 427-430 ◽  
Author(s):  
J. Nevalainen ◽  
P.-R. Rantala ◽  
J. Junna ◽  
R. Lammi

Conventional and oxygen bleaching effluents from hardwood kraft pulp mills were treated in laboratory-scale activated sludge processes. The main interest was the fate of organochlorine compounds in the activated sludge process. In the treatment of conventional bleaching wastewaters the BOD7-reduction was 80-91 % and in oxygen bleaching wastewaters 86-93 %. The respective CODCr removals were about 40 % and about 50 %. The AOX reductions were on average 22 % and 40 % in the treatment of conventional and oxygen bleaching effluents, respectively. The reductions of chlorinated phenols, guajacols and catecols were usually more than 50 % in both reactors. Very little accumulation of AOX into the sludge was observed. The stripping of AOX from aeration unit was insignificant.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 203-209 ◽  
Author(s):  
R. Kayser ◽  
G. Stobbe ◽  
M. Werner

At Wolfsburg for a load of 100,000 p.e., the step-feed activated sludge process for nitrogen removal is successfully in operation. Due to the high denitrification potential (BOD:TKN = 5:1) the effluent total nitrogen content can be kept below 10 mg l−1 N; furthermore by some enhanced biological phosphate removal about 80% phosphorus may be removed without any chemicals.


2019 ◽  
Vol 652 ◽  
pp. 1366-1374 ◽  
Author(s):  
Guo-hua Liu ◽  
Yuanyuan Wang ◽  
Yuankai Zhang ◽  
Xianglong Xu ◽  
Lu Qi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document