Use of ribosomal RNA-based molecular probes for characterization of complex microbial communities in anaerobic biofilms

1995 ◽  
Vol 31 (1) ◽  
pp. 261-272 ◽  
Author(s):  
Lutgarde Raskin ◽  
Rudolf I. Amann ◽  
Lars K. Poulsen ◽  
Bruce E. Rittmann ◽  
David A. Stahl

The use of ribosomal RNA (rRNA) probe technology for the characterization of complex microbial communities is reviewed and illustrated by discussing the results of a long-term study of four anaerobic fixed-bed biofilm reactors. Two distinct approaches were used to characterize the microbial community structure in these biofilm reactors. The first used a collection of phylogenetically defined oligonucleotide rRNA probes for methanogens and sulfate-reducing bacteria (SRB) to quantify their populations. Population abundance was linked to the functional behavior of the biofilm reactor community by determining the effluent concentrations of the substrates, intermediates, and final products of microbial metabolism. This analysis indicated that the presence of SRB (especially Desulfovibrio-species) was not dependent upon the presence of sulfate. Methanobacteriales-species were the major competitors for hydrogen with these SRB in the absence of sulfate. The second approach involved selective amplification, cloning, sequencing, and whole cell hybridization to identify, visualize, and isolate a biofilm community member (strain PT-2). Subsequently, it was determined that the growth rate of strain PT-2 was significantly higher in young biofilms than in established biofilms.

1991 ◽  
Vol 23 (7-9) ◽  
pp. 1417-1425 ◽  
Author(s):  
Sheng-Kun Chen ◽  
Chin-Kun Juaw ◽  
Sheng-Shung Cheng

Two sets of fixed-film biological processes were operated separately for nitritification of amnonium and for denitritification of nitrite associated with organic compounds. High strength amnonium wastewater (50-1000 mg NH4+-N/l) could be effectively nitritified by a draft-tube fluidized bed which was operated at an extremely high loading of 1.0 kg NH4−1-N/m3.day with 95% amnonium conversion and 60 to 95% nitrite formation. Additionally, a biofilm fixed-bed was employed to denitritify the high strength nitrite (200 to 1000 mg NO2−-N/l) associated with organic compounds of glucose, acetate and benzoic acid. Complete nitrite removal could be achieved with sufficient HRT and COD/NO2−-N ratio. The conversion ratios were estimated experimentally at 2.5 for glucose and acetate, and 2.0 g ∆COD/g ∆NO2−-N for benzoic acid. A proposed process of an aerobic nitritifying biofilm reactor combined with an anoxic denitritifying biofilm reactor in series could be employed for complete nitrogen removal.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 22
Author(s):  
Gasim Hayder ◽  
Puniyarasen Perumulselum ◽  
Hitham Alhussian

Fixed bed biofilm reactors were evaluated with three different arrangements of bio-balls. The performance of different arrangements was evaluated based on chemical oxygen demand (COD), total suspended solid (TSS) and mixed liquor suspended solid (MLSS). The three rectors were fabricated and operated in lab scale model with real domestic wastewater. Considering the TSS removal efficiency, arrangement one was the best followed by arrangement two and arrangement three. While for COD, arrangement one recorded the highest removal efficiency followed by arrangement two and column. The average COD concentration for arrangement one was 23 while for arrangement two and arrangement three was 25 and 36 mg/l respectively. The overall average effluent TSS concentrations for the arrangement one, two and three were 25, 32 and 45 mg/l respectively. TSS and COD removal was almost the same for arrangement one and arrangement two but arrangement one has the highest among them, and all removal is acceptable under Malaysian standards. Besides that, all the three arrangements have the differences in terms of maintenance and installation. There was no clogging occurred in all the three arrangements.


2017 ◽  
Vol 77 (3) ◽  
pp. 589-596 ◽  
Author(s):  
Bernard Patry ◽  
Étienne Boutet ◽  
Serge Baillargeon ◽  
Paul Lessard

Abstract An experimental study dedicated to the characterization of the settleability of solids produced in immersed fixed media biofilm reactors has been carried out. The influence of operating temperature (0.1 to 16 °C) and surface organic loading rate (OLR) (0.4 to 10 g of soluble carbonaceous BOD5 per m2 of media per day) on settleable solids quantities, particle size distributions (PSD) as well as flocs morphology was evaluated. Results have shown that the OLR has no statistically significant influence on the settleability of the suspended solids. However, the operating temperature was identified as a factor that significantly influences the settling potential. The highest operating temperatures (14–16 °C) were related to the worst settling performances. On the other hand, the best settling performances were observed at intermediate operating temperatures (around 10 °C). The latter conditions were also associated with the largest fractions of large particles (>100 μm) in the effluent. Differences in PSD were found to be well correlated with settling performances. Part of the performance results variability which cannot be explained by differences in PSD can potentially be attributed to differences in flocs morphology (compactness).


2007 ◽  
Vol 55 (8-9) ◽  
pp. 83-89 ◽  
Author(s):  
S. Schlegel ◽  
H. Koeser

Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.


1995 ◽  
Vol 68 (4) ◽  
pp. 297-308 ◽  
Author(s):  
Lutgarde Raskin ◽  
Dandan Zheng ◽  
Matt E. Griffin ◽  
Peter G. Stroot ◽  
Pavitra Misra

2007 ◽  
Vol 19 (2) ◽  
pp. 161-177 ◽  
Author(s):  
Stephanie A. Freeman ◽  
Reyes Sierra-Alvarez ◽  
Mahmut Altinbas ◽  
Jeremy Hollingsworth ◽  
Alfons J. M. Stams ◽  
...  

1997 ◽  
Vol 36 (12) ◽  
pp. 91-99 ◽  
Author(s):  
Akira Hirata ◽  
Haeng-Seog Lee ◽  
Satoshi Tsuneda ◽  
Tomotake Takai

Two types of anaerobic-aerobic biofilm processes were applied to the treatment of the photographic processing wastewater. Two-phase fixed bed reactor packed with sponge cubic media and completely mixing three-phase fluidized bed reactor, respectively, were used as an anaerobic and aerobic biofilm reactors. One of the aerobic biofilm reactors was packed with cement balls (CB) made by crushed cement particles, and another packed with biological activated carbon (BAC). The fivefold diluted photographic processing wastewater, from which Ag had been removed previously, was used as an influent (BOD 5,700 g/m3, CODcr 17,000 g/m3, T-N 2,600 g/m3). During long-term continuous biological treatment, BOD values in effluent decreased gradually and reached 280 g/m3, which could fulfill the sewage discharge control value in Japan (BOD < 600 g/m3). It took more than one year to acclimatize the sludge and to get the effective microorganisms for degrading the compounds in the photographic processing wastewater. However, pH values in the aerobic biofilm reactors fell down to 3∼4. This was possibly because thiosulfate (5,700 g/m3) in the photographic processing wastewater was almost oxidized to sulfate by sulfur-oxidizing bacteria. For the purpose of obtaining higher BOD removal efficiency, pH in the aerobic biofilm reactor was adjusted to 7 using pH controller. As a result, BOD removal ratio was gradually improved, and the sewage discharge control value was steadily achieved after 181 days. The number of bacteria in the anaerobic biofilm reactor and the aerobic biofilm reactor with pH controller were 6.0×109 N/mL and 1.1×108 N/mL, respectively.


Sign in / Sign up

Export Citation Format

Share Document