Vulnerability to diffuse pollution and average nitrate contamination of european soils and groundwater

1995 ◽  
Vol 31 (8) ◽  
pp. 159-165 ◽  
Author(s):  
C. R. Meinardi ◽  
A. H. W. Beusen ◽  
M. J. S. Bollen ◽  
O. Klepper ◽  
W. J. Willems

From the Atlantic Ocean to the Ural Mountains, European soils are threatened by diffuse pollution from modern agriculture and increased atmospheric deposition. The vulnerability of the soil to diffuse pollution depends on land cover, topsoil features, net precipitation, aquifer type, groundwater recharge and age. The elaboration of the various elements was realized by applying Geographical Information Systems (GISs). Precipitation and the actual evapotranspiration were estimated using meteorological data. The resulting net precipitation is discharged by groundwater recharge and surfacial runoff, with the division of net precipitation in groundwater recharge and surfacial flow following from climate and soil features. The average groundwater age was based on aquifer depth, porosity and the recharge. The vulnerabilities of the soil and groundwater were estimated by establishing a ranking of the combined risks of a diffuse contamination for the topsoil and for groundwater in aquifers. Nitrogen compounds in soils are caused mainly by manuring and fertilization of agricultural lands and atmospheric deposition. The varying doses of fertilizer and manure and the atmospheric deposition of nitrogen compounds were assessed for an actual situation. Only part of the applied doses leached into the soil. The leaching of nitrate to a level of 1 m below land surface was estimated by applying empirical relations derived from the northwest European experience, based on land use, features of the topsoil and net precipitation. The subsequent leaching to deeper strata and a further denitrification also depend on groundwater recharge and aquifer type. The average nitrate concentration in the various aquifers was assessed by estimating the nitrogen doses to European soils in the course of time in combination with the groundwater age. Results, attained using GIS and presented in the form of maps, show the leaching of nitrate concentrations to a level of 1 m below land surface and also the average concentration in the upper aquifer system.

2005 ◽  
Vol 4 ◽  
pp. 17-22 ◽  
Author(s):  
D. Pullar

Abstract. Land-surface processes include a broad class of models that operate at a landscape scale. Current modelling approaches tend to be specialised towards one type of process, yet it is the interaction of processes that is increasing seen as important to obtain a more integrated approach to land management. This paper presents a technique and a tool that may be applied generically to landscape processes. The technique tracks moving interfaces across landscapes for processes such as water flow, biochemical diffusion, and plant dispersal. Its theoretical development applies a Lagrangian approach to motion over a Eulerian grid space by tracking quantities across a landscape as an evolving front. An algorithm for this technique, called level set method, is implemented in a geographical information system (GIS). It fits with a field data model in GIS and is implemented as operators in map algebra. The paper describes an implementation of the level set methods in a map algebra programming language, called MapScript, and gives example program scripts for applications in ecology and hydrology.


Hydrology ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 51 ◽  
Author(s):  
Adam Love ◽  
Andy Zdon

Estimating groundwater recharge in arid or semiarid regions can be a difficult and complex task, since it is dependent on a highly variable set of spatial and temporal hydrologic parameters and processes that are dependent on the local climate, the land surface properties, and subsurface characteristics. As a result, traditional methods for estimating the recharge can result in a wide range of derived values. This is evident in the southeastern Mojave Desert, where calculated recharge estimates by previous investigators that range over an order of magnitude (from ~2500 to ~37,000 acre feet per year) are reported. To narrow down this large span of recharge estimates to narrower and more plausible values, this study evaluates the previous recharge estimates in this region, to examine the sources of variability in the reported results and to constrain the recharge estimates based on the hydrologic conditions and the radiocarbon age-dating of spring flows—even without knowledge of the precise subsurface hydrology. The groundwater age and perennial flow characteristics of springs in this study could not be derived from waters sourced solely from local recharge. Therefore, the springs in this study require a significant groundwater contribution to their overall discharge. A previously described conceptual site model in the region established that Bonanza Spring is similarly hydrologically connected to the regional basin-fill aquifer, based on geologic and geochemical/isotopic analyses, and this conceptual site model for where perennial spring water is sourced should readily be extended to these other perennial springs in this region.


2007 ◽  
Vol 56 (1) ◽  
pp. 147-154 ◽  
Author(s):  
A. Erturk ◽  
M. Gurel ◽  
M.A. Baloch ◽  
T. Dikerler ◽  
A. Ekdal ◽  
...  

Diffuse pollution is hard to analyze, control and manage by its nature. Watershed models and Geographical Information Systems (GIS) are recently developed tools that aid analysis of diffuse sources of pollution. However, their applications are not always easy and straightforward. Turkey is a typical example of a mountainous country rich in rivers and streams. Due to the complex geomorphology, land-use and agricultural practices in most of the watersheds in Turkey, modelling, analyzing and managing diffuse pollution has been a challenge. The complex watershed structure forces the modellers to work with spatially high resolution data. Apart from the data, the models themselves may also cause operational problems. These issues and their probable solutions form the basis of the discussions in this paper. It acts as a guideline for modelling and analyzing diffuse pollution by emphasizing the referred problems and difficulties. Design of an Information Technology-based system tool for watershed and/or water quality modelling, which would be suitable for countries having watersheds with similar structure and problems to those of Turkey, is also outlined.


2002 ◽  
Vol 45 (9) ◽  
pp. 149-156 ◽  
Author(s):  
L.F. León ◽  
E.D. Soulis ◽  
N. Kouwen ◽  
G.J. Farquhar

The transferability of parameters for non-point source pollution models to other watersheds, especially those in remote areas without enough data for calibration, is a major problem in diffuse pollution modeling. A water quality component was developed for WATFLOOD (a flood forecast hydrological model) to deal with sediment and nutrient transport. The model uses a distributed group response unit approach for water quantity and quality modeling. Runoff, sediment yield and soluble nutrient concentrations are calculated separately for each land cover class, weighted by area and then routed downstream. The distributed approach for the water quality model for diffuse pollution in agricultural watersheds is described in this paper. Integrating the model with data extracted using GIS technology (Geographical Information Systems) for a local watershed, the model is calibrated for the hydrologic response and validated for the water quality component. With the connection to GIS and the group response unit approach used in this paper, model portability increases substantially, which will improve non-point source modeling at the watershed scale level.


Author(s):  
Verónica Lango-Reynoso ◽  
Karla Teresa González-Figueroa ◽  
Fabiola Lango-Reynoso ◽  
María del Refugio Castañeda-Chávez ◽  
Jesús Montoya-Mendoza

Objective: This article describes and analyzes the main concepts of coastal ecosystems, these as a result of research concerning land-use change assessments in coastal areas. Design/Methodology/Approach: Scientific articles were searched using keywords in English and Spanish. Articles regarding land-use change assessment in coastal areas were selected, discarding those that although being on coastal zones and geographic and soil identification did not use Geographic Information System (GIS). Results: A GIS is a computer-based tool for evaluating the land-use change in coastal areas by quantifying variations. It is analyzed through GIS and its contributions; highlighting its importance and constant monitoring. Limitations of the study/Implications: This research analyzes national and international scientific information, published from 2007 to 2019, regarding the land-use change in coastal areas quantified with the digital GIS tool. Findings/Conclusions: GIS are useful tools in the identification and quantitative evaluation of changes in land-use in coastal ecosystems; which require constant evaluation due to their high dynamism.


2016 ◽  
Vol 78 ◽  
pp. 203-209 ◽  
Author(s):  
K.J. Hutchinson ◽  
D.R. Scobie ◽  
J. Beautrais ◽  
A.D. Mackay ◽  
G.M. Rennie ◽  
...  

To develop a protocol to guide pasture sampling for estimation of paddock pasture mass in hill country, a range of pasture sampling strategies, including random sampling, transects and stratification based on slope and aspect, were evaluated using simulations in a Geographical Information Systems computer environment. The accuracy and efficiency of each strategy was tested by sampling data obtained from intensive field measurements across several farms, regions and seasons. The number of measurements required to obtain an accurate estimate was related to the overall pasture mass and the topographic complexity of a paddock, with more variable paddocks requiring more samples. Random sampling from average slopes provided the best balance between simplicity and reliability. A draft protocol was developed from the simulations, in the form of a decision support tool, where visual determination of the topographic complexity of the paddock, along with the required accuracy, were used to guide the number of measurements recommended. The protocol was field tested and evaluated by groups of users for efficacy and ease of use. This sampling protocol will offer farmers, consultants and researchers an efficient, reliable and simple way to determine pasture mass in New Zealand hill country settings. Keywords: hill country, feed budgeting, protocol pasture mass, slope


2020 ◽  
pp. 78-98
Author(s):  
T. V. Kotova

Proceedings of the International conference (ИнтерКарто. ИнтерГИС, Russia) devoted to geographical information systems for sustainable development of territories have been published annually since 1994. The articles discuss theoretical and methodological aspects of geoinformation support for environmental, economic and social aspects of sustainable de­velop­ment, issues of geoinformatics, cartography, remote sensing of the Earth, problems of environmental sustainability and environmental impact assessment. Over a quarter of a century, the conference proceedings got more than 125 articles related to the use of geoinformation technologies to the study and mapping of vegetation. The review of proceedings gives the concrete examples how to solve problems of vegetation mapping using GIS, it is focused on publications providing some examples of GIS appli­cation to the vegetation studies. The review is organized into thematic sections according the field of application of Geoinformatics: 1.Vegetation, 2. Dynamics, state and ecological functions of vegetation, 3. Biodiversity and its assessment, 4. Plant resources, 5. Monitoring of vegetation. The Vegetation section contains publications on vegetation studies and mapping performed for some regions of Russia — the North of the Far East, the Republic of Sakha (Yaku­tia), the Tyva Republic, Central Siberia, and others. More than half of the articles are devoted to vegetation dynamics, state and ecological functions of vegetation at different hierarchical levels. Some papers present the results of the studies based on new types of information sources (photographs) and visualization methods (animation). The use of geoinformation technologies to study biological diversity was included in the agenda of five conference sessions and later reflected in more than ten publications. They cover the development and creation of GIS, the use of geoinformation technologies for the analysis, assessment and mapping of biodiversity, for its monitoring and conservation. Quite a large number of articles are devoted to the study of forest resources. GIS technologies were used to solve problems of forest management, cartometric analysis of forested areas, determination of taxation indicators, systematization of forest conditions, etc. Examples of geoinformation versatile research for medicinal plant resources are given to assess their quality, resources and productivity in the region, to identify growing areas, including ones to be protected. Most of the published materials concerning to vegetation monitoring mainly relate to forests and forest management.


Sign in / Sign up

Export Citation Format

Share Document