Strategy for land application of sewage sludge in Norway

1997 ◽  
Vol 36 (11) ◽  
pp. 283-290 ◽  
Author(s):  
Bjarne Paulsrud ◽  
Kjell Terje Nedland

The Norwegian public health and environmental authorities have launched a regulation for sewage sludge handling and disposal aiming at increasing the amount of sludge to be utilised on land areas. The strategy for achieving this is to secure that only high quality sludge is being offered to agriculture and green areas; the two disposal routes acceptable for land application of sludge in Norway. Most sewage treatment plants have experienced a considerable reduction in sludge heavy metals content during the last 15-20 years and the major reason for this is believed to be the continuous control of industrial effluents discharged to the municipal sewerage system and the implementation of cleaner technologies in the industry. Health risks and odour nuisance from the sewage sludge will be almost eliminated by employing treatment processes with the main purpose of disinfection and stabilisation of the sludge.

2000 ◽  
Vol 41 (12) ◽  
pp. 1-6 ◽  
Author(s):  
H. F. Cheng ◽  
S. Y. Chen ◽  
J. G. Lin

Di-(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in the production of polyvinyl chloride to impart flexibility to the product. Because of its mutagenicity and carcinogenicity, the presence of DEHP in sludge limits the application of sludge as a soil fertilizer. In this study, sludges were collected from three sewage treatment plants and thirteen wastewater treatment plants of different industries in Taiwan. A supercritical fluid extraction (SFE) was first established as an effective method for determining the concentration of DEHP in sludge. Laboratory-scale land-simulated experiments were performed to investigate the biodegradation of DEHP in sludge under various conditions (moisture, temperature, sunlight and ventilation). DEHP was found in aerobically and anaerobically digested sludges and their values significantly exceeded the restricted concentration of DEHP for sludge land application. DEHP was found to degrade in sludge under the conditions of good ventilation, sufficient sunlight and proper moisture. The indigenous microorganisms in the sludge appeared to dominate the biodegradation of DEHP in sludge. However about 70% of DEHP remained in sludge after 189 d indicating that DEHP is persistent in the environment.


1993 ◽  
Vol 27 (9) ◽  
pp. 159-171 ◽  
Author(s):  
Eberhard Steinle

First an overview of the systems currently in use and being discussed for sludge treatment is presented will) particular emphasis on distinguishing between the object of the system (conditioning objective of the various phases in the system) and a system concept (concept of various phases of the system in sequence to attain the disposal objective). More detailed information is given as to the salient systems as used with smaller sewage treatment plants in rural areas, such as digestion, dewatering, hygienization, composting and thermal drying. A further item of discussion is how sludge treatment influences the sewage treatment process. For the critical emissions (nitrogen, phosphorus) demanded in Germany, and thus for the degree of sewage treatment required, the load of the sewage treatment system resulting from sludge treatment needs to be taken into account. Accordingly, operation of sludge treatment and sewage purification must always be harmonized. The extent of these return loads also limits the spatial centralization of the system phases; this applies in particular to smaller sewage treatment plants in rural areas. In conclusion, an attempt is made to present a perspective for the agricultural utilization of such sludge in Germany. Since the critical values for emissions have been further tightened by new regulations, thus considerably elevating the associated sophistication of monitoring techniques, it is to be expected that the use of sewage sludge in agriculture will also be further reduced in rural areas, especially since public awareness of emission control has considerably reduced the acceptance of sewage sludge as fertilizer.


2011 ◽  
Vol 183-185 ◽  
pp. 1417-1422 ◽  
Author(s):  
Xiang Sheng Cao ◽  
Xue Jing Meng ◽  
Xue Zheng Meng

With the booming construction of sewage treatment plants aiming at environmental protection, China has to face an emerging urgent task to address the sludge treatment and disposal problem. However there is a big controversy in China about the sludge treatment and disposal strategies. Some scientists suggest incinerating, while others insist on landfilling. In this paper, from the perspective of sustainable development and cyclic economy, a detailed analysis of nutrients cycle mainly related to nitrogen and phosphate before and after industrialization was made and a view that sludge should go back to soils to re-establish a sound nutrients cycle was put forward. Then the feasibility for sludge recycle to soils was discussed and some land application methods for sludge were introduced. At last, a successful case of producing compounded fertilizer from dewatered sludge in Northeast China was described in detail.


2013 ◽  
Vol 671-674 ◽  
pp. 2736-2741
Author(s):  
Yin An Ming ◽  
Tao Tao

To reuse municipal sewage sludge safely, experiment was carried out on grapefruit trees fertilized with composted sludge from Shiweitou Sewage Treatment Plant in Xiamen City of China, and a method was introduced of how to assess the environmental quality of grapefruit trees soil fertilized with sludge by Set Pair Analysis (SPA) model. The results showed that the soil in the surface layer (0-15cm) and the deeper layer (15-30cm) was less clean, and the environment of soil was not polluted. Thus it was feasible to use sludge as fruit fertilizer. The maximum service life of sludge for continuous land application was estimated by taking Cd as the limiting factor, which would provide scientific guide and technical support for safe land application of sludge.


Author(s):  
Junwon Park ◽  
Changsoo Kim ◽  
Youngmin Hong ◽  
Wonseok Lee ◽  
Hyenmi Chung ◽  
...  

In this study, we analyzed 27 pharmaceuticals in liquid and solid phase samples collected from the unit processes of four different sewage treatment plants (STPs) to evaluate their distribution and behavior of the pharmaceuticals. The examination of the relative distributions of various categories of pharmaceuticals in the influent showed that non-steroidal anti-inflammatory drugs (NSAIDs) were the most dominant. While the relative distribution of antibiotics in the influent was not high (i.e., 3%–5%), it increased to 14%–30% in the effluent. In the four STPs, the mass load of the target pharmaceuticals was reduced by 88%–95% mainly in the biological treatment process, whereas the ratio of pharmaceuticals in waste sludge to those in the influent (w/w) was only 2%. In all the STPs, the removal efficiencies for the stimulant caffeine, NSAIDs (acetaminophen, naproxen, and acetylsalicylic acid), and the antibiotic cefradine were high; they were removed mainly by biological processes. Certain compounds, such as the NSAID ketoprofen, contrast agent iopromide, lipid regulator gemfibrozil, and antibiotic sulfamethoxazole, showed varying removal efficiencies depending on the contribution of biodegradation and sludge sorption. In addition, a quantitative meta-analysis was performed to compare the pharmaceutical removal efficiencies of the biological treatment processes in the four STPs, which were a membrane bioreactor (MBR) process, sequencing batch reactor (SBR) process, anaerobic–anoxic–oxic (A2O) process, and moving-bed biofilm reactor (MBBR) process. Among the biological processes, the removal efficiency was in the order of MBR > SBR > A2O > MBBR. Among the tertiary treatment processes investigated, powdered activated carbon showed the highest removal efficiency of 18%–63% for gemfibrozil, ibuprofen, ketoprofen, atenolol, cimetidine, and trimethoprim.


2001 ◽  
Vol 44 (10) ◽  
pp. 101-106 ◽  
Author(s):  
M. Tateda ◽  
N.V. Hung ◽  
H. Kaku ◽  
M. Asano ◽  
M. Ike ◽  
...  

A method of quantitative analysis of nonylphenol polyethoxylates (NPnEOs) and their biodegration products (NPE-BDPs) in sewage sludge, which is effective, economical, and applicable to a high performance liquid chromatography was developed and actual sludge samples collected from Japanese sewage treatment plants (STPs) were analyzed using the method to confirm its effectiveness. Soxhlet extraction showed better recovery in a spike and recovery test than shaking extraction. Among the four pretreatments for Soxhlet extraction tested, the condition in which samples were freeze-dried, ultrasonicated, and extracted with methanol showed the best recovery efficiency. Quantitative analysis of NPE-BDPs in STP sludge resulted in 6.1 μg/g, 4.3 μg/g, and 8. μg/g in average concentration for NPnEOs (n=1-3), NPnEOs (n=4-18), and nonylphenol ethoxycarboxylates (NPnECs (n=1-3)), respectively, and the values of concentration were 100-1000 times higher than those in effluent at Japan's STPs. The results implied importance of quantitation of NPE-BDPs in sewage sludge to assess the risk to the environment.


2010 ◽  
Vol 62 (11) ◽  
pp. 2501-2509 ◽  
Author(s):  
L. Y. Wang ◽  
X. H. Zhang ◽  
N. F. Y. Tam

Seven typical endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), 4-tert-octylphenol (OP), estrone (E1), estradiol (E2), 17α-estradiol (17α-E2), estriol (E3) and 17α-ethinylestradiol (EE2) in wastewater, were simultaneously determined with gas chromatography–mass spectrometry (GC–MS). Samples, including influents, effluents and wastewater of different unit processes, were taken seasonally from three different sewage treatment plants. The result showed that BPA and EE2 were the two main types of EDCs in all the samples. The average concentration of BPA were in the range of 268.1–2,588.5 ng l−1 in influents and 34.0–3,099.6 ng l−1 in effluents, while EE2 ranging from 133.1 to 403.2 ng l−1 and from 35.3 to 269.1 ng l−1, respectively. Seasonal change of EDCs levels in effluents was obvious between wet season and dry season. Besides, BPA and E3 could be effectively removed by the biological treatment processes (oxidation ditch and A2/O) with the unit removal of 64–91% and 63–100% for each compound, while other five EDCs had moderate or low removal rates. The study also proved that physical treatment processes, including screening, primary sedimentation and pure aeration, had no or little effect on EDCs removal.


2006 ◽  
Vol 54 (5) ◽  
pp. 119-129 ◽  
Author(s):  
F. Kato ◽  
H. Kitakoji ◽  
K. Oshita ◽  
M. Takaoka ◽  
N. Takeda ◽  
...  

The recovery of phosphorus from sewage and sludge treatment systems is particularly important because it is a limited resource and a large proportion of the phosphorus currently used in Japan must be imported. We have been experimentally evaluating recovery methods with sulphide. In this study, we focussed on the extraction of phosphate from the sludge, and sought to achieve a greater extraction efficiency and to validate the extraction mechanism. We conducted three experiments, i.e. a sludge-type experiment, a coagulant ratio of pre-coagulated sludge experiment, and a concentration of pre-coagulated sludge experiment. Phosphate was extracted not with normal sewage sludge but with pre-coagulated sludge and FePO4 reagent at S/Fe=1.0–2.0. A coagulant ratio of 23 mg Fe L−1 was required in the pre-coagulation process to effectively extract phosphate. A high concentration of pre-coagulated sludge was required for the phosphate extraction. The mass balance was calculated, and 44.0% of phosphorus was extracted to supernatant, and 98.5% of iron and 98.3% of sulphur (44.1% of sulphur was sulphide). Thus, phosphate can be selectively separated from iron by the phosphate extraction method with NaHS, and phosphorus and iron can be recovered and reused at sewage treatment plants using ferric chloride as a coagulant.


Sign in / Sign up

Export Citation Format

Share Document