SBR Technology Used for Advanced Combined Municipal and Tannery Wastewater Treatment with High Receiving Water Standards

1999 ◽  
Vol 40 (4-5) ◽  
pp. 451-458 ◽  
Author(s):  
J. Banas ◽  
E. Plaza ◽  
W. Styka ◽  
J. Trela

The wastewater treatment plant (WWTP) in Nowy Targ, Poland, is the largest in Europe based on classical sequencing batch reactor (SBR) technology. The plant was completed in April 1995 as one of the essential elements in a program for the protection of the water quality in the Czorsztyn Reservoir. The process technology was designed for application to a typical municipal wastewater with a separate unit to treat tannery wastewater containing chromium. Experience from plant operation showed that the municipal wastewater inflow to the WWTP included tannery wastewater with increasing chromium concentrations, caused by poor wastewater management in the city. The average value in the influent was around 3 mg Cr/l (1996-1997) and showed an increasing trend. Investigations were focused on identification of the factors affecting the process performance. In this paper, evaluation of the treatment efficiency and process performance during 2 years of plant operation is presented, including studies of nitrification, denitrification and biological phosphorus removal. A cycle analysis was performed to investigate the reduction of different parameters during different phases of a cycle. Results of a sludge activity study based on OUR, AUR and NUR tests are presented and discussed.

1998 ◽  
Vol 38 (4-5) ◽  
pp. 69-77 ◽  
Author(s):  
M. Kabacinski ◽  
B. Hultman ◽  
E. Plaza ◽  
J. Trela

Advanced process technology has been implemented at newly built wastewater treatment plants in Central and Eastern Europe. The wastewater treatment plant (WWTP) in Nowy Targ, Poland, the largest in Europe based on sequencing batch reactor (SBR) technology, has shown that newly constructed plants must be integrated into the system of water, wastewater, and sludge management in the city and the region. A significant supply of tannery wastewater with increasing chromium concentrations in the influent to the WWTP has resulted in many operational problems related mainly to sludge treatment. Evaluation of the process performance and sludge handling for 2 years of plant operation is presented. Efficient biological phosphorus removal with concentrations lower than 1 mg/l in effluent is obtained. Nitrogen removal is characterised by a low nitrification rate and a high denitrification rate. Problems with sludge handling are related to high excess sludge production, insufficient sludge stabilisation, low sludge dewatering efficiency and high chromium content in the sludge. Different strategies for sludge handling improvement are discussed. Sludge should be treated as a resource, which is recirculating in an eco-cycle with recovery of nutrients and energy. Such a process is proposed for the WWTP in Nowy Targ.


Author(s):  
Omar Alagha ◽  
Ahmed Allazem ◽  
Alaadin A. Bukhari ◽  
Ismail Anil ◽  
Nuhu Dalhat Mu'azu

The present study investigates the performance of a pilot-scale Sequencing Batch Reactor (SBR) process for the treatment of wastewater quality parameters, including turbidity, total suspended solids (TSS), total solids (TS), nitrogen (ammonia (NH3–N), nitrite (NO2−), and nitrate (NO3−), phosphate (PO43−), the chemical oxygen demand (COD), and the 5-day biological oxygen demand (BOD5), from municipal wastewater. Two scenarios, namely, pre-anoxic denitrification and post-anoxic denitrification, were investigated to examine the performance of a pilot-scale SBR on the wastewater quality parameters, particularly the nitrogen removal. The correlation statistic was applied to explain the effects of operational parameters on the performance of the SBR system. The results revealed that the post-anoxic denitrification scenario was more efficient for higher qualify effluent than the first scenario. The effluent concentrations of the targeted wastewater quality parameters obtained for the proposed SBR system were below those of the local standards, while its performance was better than that of the North Sewage Treatment Plant, Dharan, Eastern province, Kingdom of Saudi Arabia (KSA), in terms of the BOD5, COD, TN, and PO43- treatment efficiencies. These results indicated the suitability of SBR technology for wastewater treatment in remote areas in the KSA, with a high potential of reusability for sustainable wastewater management.


2008 ◽  
Vol 58 (2) ◽  
pp. 435-438 ◽  
Author(s):  
M. Kornaros ◽  
C. Marazioti ◽  
G. Lyberatos

SBRs are usually preferred as small and decentralized wastewater treatment systems. We have demonstrated previously that using a frequent enough switching between aerobic and anoxic conditions and a specific to the treated wastewater aerobic to anoxic phase ratio, it is possible to by-pass the second step of nitrification (i.e. conversion of nitrite to nitrate nitrogen). This innovative process for nitrate by-pass has been branded as UP-PND (University of Patras-Partial Nitrification Denitrification) (WO 2006/129132). The proved methodology was successfully transferred from a lab-scale SBR reactor treating synthetic wastewater to a pilot-scale SBR system treating real wastewater. In this work we present the results from the operation of this pilot-scale SBR, constructed in the Wastewater Treatment Plant of Patras (Greece), using 6-hour, 8-hour and 12-hour cycles. It is demonstrated that three pairs of aerobic/anoxic phases with a relative duration of 1:2 (8-hour cycle) and 2:3 (12-hour cycle) secures the desired by-pass of nitrate production.


2014 ◽  
Vol 1030-1032 ◽  
pp. 387-390
Author(s):  
Chun Di Gao ◽  
Shi Xin Fan ◽  
Er Long Jiao ◽  
Hao Li ◽  
Wei Xiao Wang

A novel alternating oxic-anoxic operation mode of shortcut nitrification-denitrification was developed in a sequencing batch reactor at ambient temperature. Operational parameters favorable for maintaining the shortcut nitrification-denitrification were investigated and optimized. The experiments showed that alternating oxic-anoxic shortcut nitrification-denitrification system was able to be an independent treatment process in domestic wastewater treatment. And the optimization approach was so efficient that the main pollutant discharge targets achieved Standard A of the first class in "Discharge standard of pollutants for municipal wastewater treatment plant". Moreover, the reliability of the operation strategy in this experimentation was proved, which indicated the excellent nitrogen removal performances.


2014 ◽  
Vol 9 (2) ◽  
pp. 235-242 ◽  
Author(s):  
S. Morling ◽  
A. Franquiz ◽  
J. Måhlgren ◽  
Å. Westlund

A biological wastewater treatment plant, Nynäshamn treating municipal wastewater and septic sludge operated with a combination of sequencing batch reactor (SBR) units and constructed wetland is presented in this paper. The plant has to treat low temperature wastewater in winter time, still with demands for a biological nitrogen removal. Treatment results from a 13 year operation period are presented. Special attention was given to the nutrient removal during low temperature conditions. The combination of a SBR system along with classical chemical precipitation and a polishing step based on ‘natural’ extensive treatment has been a sustainable way to keep the discharge levels low. The combined treatment with SBR and the wetland at the Nynäshamn plant has resulted in improved discharge levels typically as follows (annual mean values); BOD7 3 mg/l, to be compared with the formal consent value of <15 mg/l, total P < 0.1 mg/l, to be compared with the formal consent value of <0.5 mg/l and total N 7 mg/l, to be compared with the formal consent value of <15 mg/l. It is also important to underline that the change of process train has resulted in a substantial saving of the precipitant agent for phosphorus removal. The needed dosage is now 50% of the previous dose, before the implementation of the SBR-units.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 171-179 ◽  
Author(s):  
G. Bahre ◽  
W. Firk ◽  
M. Gassen

The report describes low-cost development and design of a two-stage wastewater treatment plant for 90,000 PE to achieve the highest possible degree of phosphorus and nitrogen elimination. The receiving water body of the treatment plant is a small watercourse fed almost exclusively by treated wastewater. A significant improvement in the water quality of this watercourse is planned. In particular, the performance of the wastewater treatment plant will need to be enhanced. The plant operator, the Erft River Board, organized a competition to attract solutions for an appropriate development of the plant from several consultants. Apart from embodying the concept of extensive wastewater treatment, designs were expected to preserve the existing infrastructure of the two-stage treatment plant as far as possible. Following selection of the most suitable design, the intended process technology is currently being tested in a pilot-scale plant. Planning envisages advanced wastewater treatment processes, including enhanced biological phosphorus removal, chemical precipitation/flocculation, nitrification and denitrification and combined coagulation/filtration. The pilot-scale investigations are carried out in close co-operation between the water authorities, the plant operators, the consultant, and a university institute of sanitary engineering. The paper presents the design and first results of the pilot-scale investigations in terms of the parameters BOD5, COD, phosphorus, ammonia and nitrate.


1995 ◽  
Vol 32 (7) ◽  
pp. 143-150
Author(s):  
D. Heinrich

The result of the North Sea Conference 1987 in London was the 50% reduction of dangerous and nutritive substances before 1995. To reach that aim the wastewater treatment plants discharging to the river Elbe were subjected to more severe discharge standards. In our case the company could also use the publicly owned treatment plant of Hamburg and so we were in direct competition with that plant. After several conferences with the client and the water authority we began the planning. The treatment plant also includes removal of nitrogen in the last stage and phosphorus in the biological stage (not only with chemicals). Another difficulty was that only a small area between the dam of the Elbe with a street alongside and the offices was available. So we had to plan a very compact treatment plant. To avoid the emission of odours the plant was completely housed. As in other factories we also had the problem that on weekends and during the holidays very little water is flowing to the plant. The sewage system collected the wastewater in one system and stormwater in another. Since the area is flat, several pumpstations transport the water. So we planned a modular system with sieve screen and three SBR reactors to use it further as cascaded activated sludge tanks with predenitrification and enhanced biological phosphorus removal. The sludge treatment was realized as an aerobic thermophilic process in a separate tank. To improve matters we also installed a computer for process control. The influent concentrations are higher than municipal wastewater which is conditioned by the separate system of transportation without infiltration water. For example COD influent concentrations are about 1500 mg/l, NH4-N about 130 mg/l and total phosphorus Ptot about 17 mg/l. The results we obtained in the plant are presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document