Strategies for improvement of sludge quality and process performance of sequencing batch reactor plant treating municipal and tannery wastewater

1998 ◽  
Vol 38 (4-5) ◽  
pp. 69-77 ◽  
Author(s):  
M. Kabacinski ◽  
B. Hultman ◽  
E. Plaza ◽  
J. Trela

Advanced process technology has been implemented at newly built wastewater treatment plants in Central and Eastern Europe. The wastewater treatment plant (WWTP) in Nowy Targ, Poland, the largest in Europe based on sequencing batch reactor (SBR) technology, has shown that newly constructed plants must be integrated into the system of water, wastewater, and sludge management in the city and the region. A significant supply of tannery wastewater with increasing chromium concentrations in the influent to the WWTP has resulted in many operational problems related mainly to sludge treatment. Evaluation of the process performance and sludge handling for 2 years of plant operation is presented. Efficient biological phosphorus removal with concentrations lower than 1 mg/l in effluent is obtained. Nitrogen removal is characterised by a low nitrification rate and a high denitrification rate. Problems with sludge handling are related to high excess sludge production, insufficient sludge stabilisation, low sludge dewatering efficiency and high chromium content in the sludge. Different strategies for sludge handling improvement are discussed. Sludge should be treated as a resource, which is recirculating in an eco-cycle with recovery of nutrients and energy. Such a process is proposed for the WWTP in Nowy Targ.

1999 ◽  
Vol 40 (4-5) ◽  
pp. 451-458 ◽  
Author(s):  
J. Banas ◽  
E. Plaza ◽  
W. Styka ◽  
J. Trela

The wastewater treatment plant (WWTP) in Nowy Targ, Poland, is the largest in Europe based on classical sequencing batch reactor (SBR) technology. The plant was completed in April 1995 as one of the essential elements in a program for the protection of the water quality in the Czorsztyn Reservoir. The process technology was designed for application to a typical municipal wastewater with a separate unit to treat tannery wastewater containing chromium. Experience from plant operation showed that the municipal wastewater inflow to the WWTP included tannery wastewater with increasing chromium concentrations, caused by poor wastewater management in the city. The average value in the influent was around 3 mg Cr/l (1996-1997) and showed an increasing trend. Investigations were focused on identification of the factors affecting the process performance. In this paper, evaluation of the treatment efficiency and process performance during 2 years of plant operation is presented, including studies of nitrification, denitrification and biological phosphorus removal. A cycle analysis was performed to investigate the reduction of different parameters during different phases of a cycle. Results of a sludge activity study based on OUR, AUR and NUR tests are presented and discussed.


1993 ◽  
Vol 28 (10) ◽  
pp. 233-242 ◽  
Author(s):  
Bjorn Rusten ◽  
Helge Eliassen

In order to optimize the sequencing batch reactor (SBR) process for nutrient removal at small wastewater treatment plants, a two year study was carried out at a treatment plant designed for 300 population equivalents. Different operating cycles, solids retention times (SRTs) and periods with co-precipitation were included in the test program. Based on the results, recommendations for achieving nitrification, denitrification and biological phosphorus removal were given. A suitable coagulant (and the optimum dosage) for co-precipitation was found as well.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


1994 ◽  
Vol 30 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Ralf Otterpohl ◽  
Thomas Rolfs ◽  
Jörg Londong

Computer simulation of activated sludge plant for nitrogen removal has become a reliable tool to predict the behaviour of the plant Models including biological phosphorus removal still require some practical experience but they should be available soon. This will offer an even wider range than today's work with nitrogen removal. One major benefit of computer simulation of wastewater treatment plants (WTP) is the optimization of operation. This can be done offline if hydrographs of a plant are collected and computer work is done with “historical” analysis. With online simulation the system is fed with hydrographs up to the actual time. Prognosis can be done from the moment of the computer work based on usual hydrographs. The work of the authors shows how accuratly a treatment plant can be described, when many parameters are measured and available as hydrographs. A very careful description of all details of the special plant is essential, requiring a flexible simulation tool. Based on the accurate simulation a wide range of operational decisions can be evaluated. It was possible to demonstrate that the overall efficiency in nitrogen removal and energy consumption of ml activated sludge plant can be improved.


Vestnik MGSU ◽  
2019 ◽  
pp. 589-602 ◽  
Author(s):  
Tran Ha Quan ◽  
Elena S. Gogina

Introduction. Vietnamese urban municipal wastewater treatment plants are mainly of aeration-type facilities. Nowadays, an aeration-type plant, the Sequencing Batch Reactor (SBR), is widely applied and possesses a number of advantages over traditional systems with suspended activated sludge. Advantages of the SBR are mainly concluded in simplicity of operation, occupied area and cost. There is a number of problems at the wastewater treatment plants; they are connected with supplying only a half of wastewater design amount for the treatment as well as with quality of the purified water that must satisfy requirements of the Vietnamese discharge standard, the Standard A. Therefore, reconstruction and modification of the SBR is the major challenger to ensure the sustained development of large Vietnamese cities and maintenance of ecological balance. Materials and methods. To enhance the efficiency of wastewater purification in the SBR, the experiments were set on reactor reconstruction and modification by two directions: (1) Technological method, i.e. applying the Biochip 25 biocarrier, and (2) Operation method, i.e. adding the anoxic phase in reactor operation cycle. Laboratory tests were conducted for each of the directions, including comparison of a typical reactor with the modified one. Results. The study resulted in obtaining an optimal amount of the BioChip biocarrier material (10 to 20 %) that increased efficiency of wastewater purification by 10 to 20 %. In addition to this, when creating an anoxic phase of the operation cycle, efficiency of nitrogen removal increased by 20 %. When the denitrification occurs under the anoxic conditions, it contributes to stabilization of ammonium nitrogen removal for daily nitrogen loading in reactor of 0.3 to 0.8 TKN kg/sludge kg. Conclusions. The suggested technology provides the quality of treated water corresponding with the Vietnamese Standard A requirements. At the present, it is planned to proceed with the experiment on the base of Vietnamese semi-industrial plant for research and appraisal of the SBR reconstruction and modification method. Acknowledgements. The authors are grateful to AKVA Control company in Samara for granted biocarrier Mutag BioChip 25 and to Associate Professor Tran Van Quang and his students, Nguyen Ngoc Phuong and Truong Quoc Dai, of Environment Protect Research Center, Danang University for support of the experiment.


2006 ◽  
Vol 54 (11-12) ◽  
pp. 241-248 ◽  
Author(s):  
J. Simon ◽  
J. Wiese ◽  
H. Steinmetz

Integrated operation strategies for combined sewer and WWTP are becoming more and more popular because of numerous benefits. One can find many examples in literature, but many of these studies deal with partly fictitious systems and/or were accomplished within the planning. Hence most of these studies do not have to deal with the restrictions given by already built constructions. The authors, who worked on several integrated projects, will discuss the requirements of SBR and CFR plants concerning an implementation of integrated operation.


2018 ◽  
Vol 85 (3) ◽  
pp. 379-383 ◽  
Author(s):  
Peter Leonard ◽  
Emma Tarpey ◽  
William Finnegan ◽  
Xinmin Zhan

This Research Communication describes an investigation into the viability of an Intermittently Aerated Sequencing Batch Reactor (IASBR) for the treatment of dairy processing wastewater at laboratory-scale. A number of operational parameters have been varied and the effect has been monitored in order to determine optimal conditions for maximising removal efficiencies. These operational parameters include Hydraulic Retention Time (HRT), Solids Retention Time (SRT), aeration rate and cycle length. Real dairy processing wastewater and synthetic wastewater have been treated using three laboratory-scale IASBR units in a temperature controlled room. When the operational conditions were established, the units were seeded using sludge from a municipal wastewater treatment plant for the first experiment, and sludge from a dairy processing factory for the second and third experiment. In experiment three, the reactors were fed on real wastewater from the wastewater treatment plant at this dairy processing factory. These laboratory-scale systems will be used to demonstrate over time that the IASBR system is a consistent, viable option for treatment of dairy processing wastewater in this sector. In this study, the capacity of a biological system to remove both nitrogen and phosphorus within one reactor will be demonstrated. The initial operational parameters for a pilot-scale IASBR system will be derived from the results of the study.


2016 ◽  
Vol 18 (3) ◽  
pp. 406-416 ◽  
Author(s):  
Khalid Muzamil Gani ◽  
Ankur Rajpal ◽  
Absar Ahmad Kazmi

The contamination level of four phthalates in untreated and treated wastewater of fifteen wastewater treatment plants (WWTPs) and their fate in a full scale sequencing batch reactor (SBR) based WWTP was evaluated in this study.


Sign in / Sign up

Export Citation Format

Share Document