Effects of real time control of sewer systems on treatment plant performance and receiving water quality

2002 ◽  
Vol 45 (3) ◽  
pp. 229-237 ◽  
Author(s):  
T. Frehmann ◽  
A. Niemann ◽  
P. Ustohal ◽  
W.F. Geiger

Four individual mathematical submodels simulating different subsystems of urban drainage were intercoupled to an integral model. The submodels (for surface runoff, flow in sewer system, wastewater treatment plant and receiving water) were calibrated on the basis of field data measured in an existing urban catchment investigation. Three different strategies for controlling the discharge in the sewer network were defined and implemented in the integral model. The impact of these control measures was quantified by representative immission state-parameters of the receiving water. The results reveal that the effect of a control measure may be ambivalent, depending on the referred component of a complex drainage system. Furthermore, it is demonstrated that the drainage system in the catchment investigation can be considerably optimised towards environmental protection and operation efficiency if an appropriate real time control on the integral scale is applied.

1998 ◽  
Vol 37 (1) ◽  
pp. 347-354 ◽  
Author(s):  
Ole Mark ◽  
Claes Hernebring ◽  
Peter Magnusson

The present paper describes the Helsingborg Pilot Project, a part of the Technology Validation Project: “Integrated Wastewater” (TVP) under the EU Innovation Programme. The objective of the Helsingborg Pilot Project is to demonstrate implementation of integrated tools for the simulation of the sewer system and the wastewater treatment plant (WWTP), both in the analyses and the operational phases. The paper deals with the programme for investigating the impact of real time control (RTC) on the performance of the sewer system and wastewater treatment plant. As the project still is in a very early phase, this paper focuses on the modelling of the transport of pollutants and the evaluation of the effect on the sediment deposition pattern from the implementation of real time control in the sewer system.


2018 ◽  
Vol 2017 (2) ◽  
pp. 552-560 ◽  
Author(s):  
Manfred Schütze ◽  
Maja Lange ◽  
Michael Pabst ◽  
Ulrich Haas

Abstract This contribution serves two purposes. (1) It presents an updated version of the Astlingen example developed by the working group ‘Integral Real Time Control’ of the German Water Association (DWA), which serves as a benchmark example for the setup and evaluation of real time control strategies. As this benchmark is also intended for educational use, it demonstrates a simple RTC algorithm, illustrating the main concepts of RTC of drainage system. (2) The paper also encourages the preliminary analysis of the potential feasibility and benefit of a temporal increase of inflow to the wastewater treatment plant (WWTP) before analysing the WWTP behaviour in detail. For the present example, RTC within the sewer system alone led to almost the same reduction of overflow volume as permitting the inflow to the WWTP to be increased for 6 h within any 24 h, if at all permitted.


2002 ◽  
Vol 45 (4-5) ◽  
pp. 373-381 ◽  
Author(s):  
J. Meirlaen ◽  
P.A. Vanrolleghem

Real time control is one of the possibilities to minimise the impact of the integrated urban wastewater system (sewer system and treatment plant) on the receiving water quality. Integrated control uses information about the river state to act in the sewer system or in treatment plant. In order to test and tune these integrated controllers, a simplified integrated model is needed. Even with these simplified models, the simulation times may be too long and further model reduction is needed. In this paper, dependency-structure based model reduction is proposed as a technique to further reduce model complexity. Three steps are proposed: relocation of the upstream system boundaries to just upstream of the first control point, relocation of the downstream boundaries to just downstream of the last measurement point, and third, a further model simplification based on an analysis of the sensitivity of the control actions on submodel elimination. The effect of applying the different reduction approaches on the control strategy and on the resulting river water quality is discussed on the basis of a case study of the catchment of Tielt.


1992 ◽  
Vol 23 (2) ◽  
pp. 121-136 ◽  
Author(s):  
Fons Nelen ◽  
Annemarieke Mooijman ◽  
Per Jacobsen

A control simulation model, called LOCUS, is used to investigate the effects of spatially distributed rain and the possibilities to benefit from this phenomenon by means of real time control. The study is undertaken for a catchment in Copenhagen, where rainfall is measured with a network of 8 rain gauges. Simulation of a single rain event, which is assumed to be homogeneous, i.e. using one rain gauge for the whole catchment, leads to large over- and underestimates of the systems output variables. Therefore, when analyzing a single event the highest possible degree of rainfall information may be desired. Time-series simulations are performed for both an uncontrolled and a controlled system. It is shown that from a statistical point of view, rainfall distribution is NOT significant concerning the probability of occurrence of an overflow. The main contributing factor to the potential of real time control, concerning minimizing overflows, is to be found in the system itself, i.e. the distribution of available storage and discharge capacity. When other operational objectives are involved, e.g., to minimize peak flows to the treatment plant, rainfall distribution may be an important factor.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 19-24 ◽  
Author(s):  
Richard Norreys ◽  
Ian Cluckie

Conventional UDS models are mechanistic which though appropriate for design purposes are less well suited to real-time control because they are slow running, difficult to calibrate, difficult to re-calibrate in real time and have trouble handling noisy data. At Salford University a novel hybrid of dynamic and empirical modelling has been developed, to combine the speed of the empirical model with the ability to simulate complex and non-linear systems of the mechanistic/dynamic models. This paper details the ‘knowledge acquisition module’ software and how it has been applied to construct a model of a large urban drainage system. The paper goes on to detail how the model has been linked with real-time radar data inputs from the MARS c-band radar.


2018 ◽  
Vol 15 (4) ◽  
pp. 362-370 ◽  
Author(s):  
Stefan Kroll ◽  
Alessio Fenu ◽  
Tom Wambecq ◽  
Marjoleine Weemaes ◽  
Jan Van Impe ◽  
...  

2015 ◽  
Vol 73 (7) ◽  
pp. 1637-1643 ◽  
Author(s):  
Stefan Kroll ◽  
Geert Dirckx ◽  
Brecht M. R. Donckels ◽  
Mieke Van Dorpe ◽  
Marjoleine Weemaes ◽  
...  

In order to comply with effluent standards, wastewater operators need to avoid hydraulic overloading of the wastewater treatment plant (WWTP), as this can result in the washout of activated sludge from secondary settling tanks. Hydraulic overloading can occur in a systematic way, for instance when sewer network connections are extended without increasing the WWTP's capacity accordingly. This study demonstrates the use of rule-based real-time control (RTC) to reduce the load to the WWTP while restricting the overall overflow volume of the sewer system to a minimum. Further, it shows the added value of RTC despite the limited availability of monitoring data and information on the catchment through a parsimonious simulation approach, using relocation of spatial system boundaries and creating required input data through reverse modelling. Focus was hereby on the accurate modelling of pump hydraulics and control. Finally, two different methods of global sensitivity analysis were employed to verify the influence of parameters of both the model and the implemented control algorithm. Both methods show the importance of good knowledge of the system properties, but that monitoring errors play a minor role.


1998 ◽  
Vol 37 (12) ◽  
pp. 69-76 ◽  
Author(s):  
W. Rauch ◽  
P. Harremoës

Real-time control of the sewer system is a frequently applied measure for the abatement of pollution caused by urban runoff in the receiving water. Although the goal is an improvement of the water quality the actual aim of real-time control is usually formulated as the reduction/avoidance of combined sewer overflow. However, testing a virtual drainage system by means of a three-month rain series, hardly any correlation between the combined sewer overflow reduction and the resulting effect on the oxygen concentration in the river has been found. The efficiency of real-time control for pollution abatement by means of artificial performance criteria has to be doubted.


1998 ◽  
Vol 25 (5) ◽  
pp. 844-853
Author(s):  
Andrée Bilodeau ◽  
Alain Mailhot ◽  
Jean-Pierre Villeneuve

This paper presents results of a study the goal of which is to evaluate the impact of rainfall forecast errors on real time control (RTC) of combined sewers in the Québec Urban Community (Q.U.C.). Firstly, we analyzed the impact of different levels of uncertainty on the probability to generate overloads in combined sewers and on the optimal overflow volume. The effects of the spatial distribution of errors on overloads and on overflow volumes have also been studied. Secondly, we modified the system management decision criteria in order to reduce the overload probability and to avoid possible backflows. This modification consisted of reducing the maximum allowable flow in the pipes of the sewer network. The results obtained showed that despite the negative impacts of forecast errors on overloads, this simple method preserves the efficiency of predictive integrated management. This ensures a safety margin on the possible backflows due to meteorological forecast errors.Key words: overflow, real time, control, combined sewers, forecast, errors, rain, overloads, backflows.


Sign in / Sign up

Export Citation Format

Share Document