Evaluation of sequencing batch reactor (SBR) and sequencing batch biofilm reactor (SBBR) for biological nutrient removal from simulated wastewater containing glucose as carbon source

2003 ◽  
Vol 48 (3) ◽  
pp. 73-79 ◽  
Author(s):  
B. Manoj Kumar ◽  
S. Chaudhari

In general, conventional activated sludge (ASP) or enhanced biological phosphorus removing (EBPR) sludge has been used as seed culture for developing EBPR sludge and the time reported for development varies from months to year. In the present study cow-dung has been used as seed culture and EBPR sludge was developed within 36 days. The developed EBPR sludge has been used to evaluate the performance of sequential batch reactor (SBR) and sequential batch biofilm reactors (SBBR) for simultaneous nitrogen and phosphorus removal from synthetic wastewater containing glucose as carbon source. Three reactors were operated, SBR-1 containing only suspended biomass, SBBR-2 and SBBR-3 containing 5% and 10% polyurethane foam (PUF) media respectively along with suspended biomass. In all the reactors phosphorus removal was nearly the same and was more than 80%. In all the three reactors greater than 90% nitrification was achieved. Nitrogen removal in SBR-1 was 48% and in SBBR-2 and SBBR-3 it was more than 62%. On line monitoring of oxidation-reduction potential (ORP), pH and phosphorus during a cycle indicated that ORP and pH can be useful for real time control and optimization of the process.

2000 ◽  
Vol 42 (3-4) ◽  
pp. 89-94 ◽  
Author(s):  
H.Y. Chang ◽  
C.F. Ouyang

This investigation incorporated a stepwise feeding strategy into the biological process containing anaerobic/oxide/anoxic/oxide (AOAO) stages to enhance nitrogen and phosphorus removal efficiencies. Synthetic wastewater was fed into the experimental reactors during the anaerobic and anoxic stages and the substrates/nutrients were successfully consumed without recycling either nitrified effluent or external carbon source. An intrinsic sufficient carbon source developed during the anoxic stage and caused the NOx (NO2-N+NO3-N) concentration to be reduced from 11.85mg/l to 5.65mg/l. The total Kjeldahl nitrogen (TKN) removal rate was between 81.81%∼93.96% and the PO4-P removal ratio ranged from 93%∼100%. The substrate fed into the anaerobic with a Q1 flow rate and a Q2 into the anoxic reactor. The three difference experiments contained within this study produced Q1/Q2 that varied from 7/3, 8/2, and 9/1. The AOAO process saved nearly one-third of the energy compared with typical biological nutrient removal (BNR) system A2O processes.


1994 ◽  
Vol 30 (6) ◽  
pp. 303-313 ◽  
Author(s):  
G. Bortone ◽  
F. Malaspina ◽  
L. Stante ◽  
A. Tilche

An Anaerobic/Anoxic Sequencing Batch Reactor (A/A SBR) with separated batch biofilm nitrification was tested for nutrient removal against a five step Anaerobic-anoxic/Oxic SBR (A/O SBR). Piggery wastewater, particularly challenging for its low COD/N ratio, was used as feed. After feeding, the A/A SBR ran under anaerobic conditions for organic carbon sequestering and phosphorus removal. A settling phase was allowed to separate an ammonia-rich supernatant to be nitrified in a external biofilm reactor. The nitrified effluent returned to the A/A SBR where nitrates were removed, being used as final electron acceptors for luxury P-uptake and organic carbon oxidation. A/A SBR showed very good N and P removal capacities with excellent sludge settling properties. On the other hand, organic carbon removal efficiency with nitrate was lower than with oxygen. Batch biofilm nitrification was very effective, with very high nitrification rates. Presence of poly-P bacteria in the A/A SBR sludge was assessed through microscopic observation and from the high cellular poly-phosphate content.


2004 ◽  
Vol 50 (6) ◽  
pp. 179-188
Author(s):  
Y. Huang ◽  
Y. Li ◽  
Y. Pan

An updated biological nitrogen and phosphorus removal process - BICT (Bi-Cyclic Two-Phase) biological process - is proposed and investigated. It is aimed to provide a process configuration and operation mode that has facility and good potential for optimizing operation conditions, especially for enhancing the stability and reliability of the biological nutrient removal process. The proposed system consists of an attached-growth reactor for growing autotrophic nitrifying bacteria, a set of suspended-growth sequencing batch reactors for growing heterotrophic organisms, an anaerobic biological selector and a clarifier. In this paper, the fundamental concept and operation principles of BICT process are described, and the overall performances, major operation parameters and the factors influencing COD, nitrogen and phosphorus removal in the process are also discussed based on the results of extensive laboratory experiments. According to the experimental results with municipal sewage and synthetic wastewater, the process has strong and stable capability for COD removal. Under well controlled conditions, the removal rate of TN can reach over 80% and TP over 90% respectively, and the effluent concentrations of TN and TP can be controlled below 15 mg/L and 1.0 mg/L respectively for municipal wastewater. The improved phosphorus removal has been reached at short SRT, and the recycling flow rate of supernatant between the main reactors and attached-growth reactor is one of the key factors controlling the effect of nitrogen removal.


Author(s):  
Mehdi Hajsardar ◽  
Seyed Mehdi Borghei ◽  
Amir Hessam Hassani ◽  
Afshin Takdastan

Abstract A series of reactors including a sequencing batch reactor (SBR) and a sequencing batch biofilm reactor (SBBR) were used for nitrogen removal. The aim of this study was simultaneous removal of NH4+-N and NOx–-N from synthetic wastewater. In the novel proposed method, the effluent from SBR was sequentially introduced into SBBR, which contained 0.030 m3 biofilm carriers, so the system operated under a paired sequence of aerobic-anoxic conditions. The effects of different carbon sources and aeration conditions were investigated. A low dissolved oxygen (DO) level in the biofilm depth of the fixed-bed process (SBBR) simulated the anoxic phase conditions. Accordingly, a portion of NH4+-N that was not converted to NO3–-N by the SBR process was converted to NO3–-N in the outer layer of the biofilm in the SBBR process. Further, simultaneous nitrification and denitrification (SND) was achieved in the SBBR where NO2–-N was converted to N2 directly, before NO3–-N conversion (partial nitrification). The level of mixed liquid suspended solids (MLSS) was 2740 mg/l at the start of the experiments. The required carbon source (C: N ratio of 4) was provided by adding an internal carbon source (through step feeding) or ethanol. Firstly, as part of the system (SBR and SBBR), SBR operated at a DO level of 1 mg/l while SBBR operated at a DO concentration of 0.3 mg/l during Run-1. During Run-2, the system operated at the low DO concentration of 0.3 mg/l. When the source of carbon was ethanol, the nitrogen removal rate (RN) was higher than the operation with an internal carbon source. When the reactors were operated at the same DO concentration of 0.3 mg/l, 99.1 % of the ammonium was removed. The NO3–-N produced during the aerobic SBR operation of the novel method was removed in SBBR reactor by 8.3 %. The concentrations of NO3--N and NO2–-N in the SBBR effluent were reduced to 2.5 and 5.5 mg/l, respectively. Also, the total nitrogen (TN) removal efficiency was 97.5 % by adding ethanol at the DO level of 0.3 mg/l. When C:N adjustment was carried out SND efficiency at C:N ratio of 6.5 reached to 99 %. The increasing nitrogen loading rate (NLR) to 0.554 kg N/m3 d decreased SND efficiency to 80.7 %.


Proceedings ◽  
2019 ◽  
Vol 48 (1) ◽  
pp. 23
Author(s):  
Sultan Salamah ◽  
Andrew Randall

Nutrients’ removal from residential and industrial wastewaters is essential for environmental and public health protection. Removal of nutrients from wastewater can be achieved chemically or biologically. Biological nutrient removal (BNR) uses a series of anaerobic, anoxic, and aerobic zones to provide conditions for the biomass to uptake the nitrogen and phosphorus species and comes in different configurations such as A/O, A2O, and five-stage BardenphoTM. However, BNR systems require a sufficient carbon source which most wastewaters lack. The goal of this study is to use a sustainable carbon source to optimize the five-stage BardenphoTM BNR systems and reduce the chemical cost. The experiments were carried out using two five-stage BardenphoTM BNR systems coupled with side-stream prefermenters. Glycerol, a biodiesel by-product, was used as a sustainable carbon source by direct addition or after fermentation. The results from both systems were beneficial to the BNR system and resulted in similar effluent quality. Both systems achieved complete denitrification and excellent phosphorus removal (82–89%). Co-fermentation of glycerol and primary solids resulted in a significant increase in the volatile fatty acid (VFA) loading beyond the estimated results, but did not correlate to better behavior between the two pilots since both systems achieved complete denitrification.


1999 ◽  
Vol 40 (8) ◽  
pp. 25-32
Author(s):  
E. Rustrian ◽  
J. P. Delgenes ◽  
N. Bernet ◽  
R. Moletta

In this study, a sequencing batch reactor (SBR) connected with a two step anaerobic digestion system is proposed in order to investigate the possibility of simultaneous C, N and P removal from wastewater. The system was studied using synthetic wastewater. In this system, the effluent of nitrate from the SBR reactor is added to the acidogenic reactor influent. Nitrate elimination and VFA production are then achieved together in the acidogenic reactor. The performances of three lab-scale reactors, operated for C, N and P biological removal are analyzed. The removals of TOC, TN and TP-PO4 were greater than 96%, 75% and 86%, respectively. The results show that the combination of anaerobic digestion in two step-SBR treatment is effective for simultaneous C, N and P removal. The benefits from this process are the saving of carbon source for denitrification and phosphorus removal. Reactor arrangement made possible the existence of zones where the different bacterial populations involved could coexist. Complete denitrification occurs in acidogenic reactor and hence the methanogenic activity is not reduced nor inhibited by N-NO3 presence, allowing greater TOC removal. A stable P-release and P-uptake took place after coupling of the three reactors. Furthermore, a fast settling, compact sludge is generated in the SBR with the operational conditions applied.


2004 ◽  
Vol 48 (11-12) ◽  
pp. 371-376 ◽  
Author(s):  
Ufuk Altinbaş ◽  
Izzet Öztürk

Removal efficiency of TOC ranged between 86–89% in an intermittently aerated reactor. High efficiency in TKN removal and nitrification was found at lower applied load or longer retention time such as 2 days. TKN removal and nitrification efficiency was found to be 17–96% and 35–99% respectively. Through examination and comparison of the removal efficiencies, the stability of nitrification/denitrification and the biological phosphorus removal it was found that the sequencing batch feeding system gave a higher performance in total nitrogen and phosphorus removals. In the SBR reactor, nitrogen removal efficiency was mainly controlled by organic loading. Nitrification efficiency ranged between 31–56%. Nearly complete denitrification was observed in the sequencing batch reactor.


2007 ◽  
Vol 55 (1-2) ◽  
pp. 477-484 ◽  
Author(s):  
Y.W. Lee ◽  
Y.J. Kim ◽  
N.I. Chang ◽  
J.G. Lee ◽  
B.H. Lee

SBR process shows high nitrogen and phosphorus removal in countries where separated sewers are used. On the other hand, removal efficiency is low in countries where combined sewers are used though the same SBR is applied. This is because the organic concentration (as BOD), which is used as carbon source for denitrification, of combined sewers is much lower than that of separated sewers. Almost all sewers in Korea are combined, and their BOD is low by about 1/2 over the level needed for denitrification. In this study, a SBR process that can optimise organic usage by step feed and recycle is thus developed to increase the removal efficiency of nitrogen and phosphorus, and the results show that the removal rates of BOD, T-N and T-P are 95.4, 81.4 and 86.1%, respectively, though influent BOD is low.


Sign in / Sign up

Export Citation Format

Share Document