The effect of wastewater discharge on biomass production and nutrient content of Cyperus papyrus and Miscanthidium violaceum in the Nakivubo wetland, Kampala, Uganda

2003 ◽  
Vol 48 (5) ◽  
pp. 233-240 ◽  
Author(s):  
F. Kansiime ◽  
M. Nalubega ◽  
J.J.A. van Bruggen ◽  
P. Denny

The nutrient content of representative plant parts and biomass production in the Nakivubo wetland, correlation of these with the wastewater flow patterns and determination of nutrient uptake, storage and biomass production of Cyperus papyrus (papyrus) and Miscanthidium violaceum was studied. On average papyrus vegetation under the influence of wastewater had higher nutrient content in the above ground biomass (1.6% N and 0.23% P on dry weight basis) than those not affected (0.98% N and 0.18% P). The biomass varied between 3,529-5,844 g/m2 and 883-1,156 g/m2 in the two respective sites. The juvenile plants of papyrus and Miscanthidium had higher concentrations of P and N in their organs compared to the mature ones. Considering the nutrients stored by the dominant vegetation and the current flow patterns of wastewater in the Nakivubo wetland, harvesting of the above ground biomass once a year, would remove 7.7% of the N input and 15.8% of the P input of the annual total load entering the wetland. However, if the wetland is bio-manipulated and the wastewater flow distributed over the whole wetland, up to 70% nitrogen and 76% phosphorus would be removed by harvesting above ground papyrus biomass.

2021 ◽  
Author(s):  
R. Kaushal ◽  
S. Islam ◽  
Salil Tewari ◽  
J. M.S. Tomar ◽  
S. Thapliyal ◽  
...  

Abstract The rapid growth rate, high biomass production, and annual harvesting, makes bamboo as suitable species for commercial production. Allometric equations for many broadleaf and conifer tree species are available. However, knowledge on biomass production and allometric equations of bamboos are limited. This study aims at developing species specific allometric models for predicting biomass and synthetic height values as a proxy variable for seven bamboo species in Himalayan foothills. Two power form based allometric models were used to predict above ground and culm biomass using Diameter at breast height (D) alone and D in combination with culm height (H) as independent variable. This study also extended to establishing H-D allometric model that can be used to generate synthetic H values as proxy to missing H. In the seven bamboo species studied, among three major biomass component (culm, branch and foliage), culm is the most important component with highest share (69.56 to 78.71%).Distribution of percentage (%) share of culm, branch and foliage to above ground fresh weight varies significantly between different bamboo species. D. hamiltonii has highest productivity for above ground biomass components. Ratio of dry to fresh weight of seven bamboo species was estimated for culm, branch, foliage and above ground biomass to convert fresh weight to dry weight.


2018 ◽  
Vol 107 (3) ◽  
pp. 1419-1432 ◽  
Author(s):  
Manichanh Satdichanh ◽  
Huaixia Ma ◽  
Kai Yan ◽  
Gbadamassi G.O. Dossa ◽  
Leigh Winowiecki ◽  
...  

2020 ◽  
Author(s):  
Benedicto Vargas-Larreta ◽  
Jorge O. López-Martínez ◽  
Jose Javier Corral-Rivas ◽  
Francisco Javier Hernández

Abstract Background: Studies on the relationships between biodiversity and ecosystem productivity have suggested that species richness and functional diversity are the main drivers of ecosystem processes. There is no general pattern regarding the relationship found in various studies, and positive, unimodal, negative, and neutral relationships keep the issue controversial. In this study, taxonomic diversity vs functional diversity as drivers of above-ground biomass were compared, and the mechanisms that influence biomass production were investigated by testing the complementarity and the mass-ratio hypoteses.Methods: Using data from 414 permanent sampling plots, covering 23% of temperate forests in the Sierra Madre Occiental (Mexico), we estimated the above-ground biomass (AGB) for trees ≥7.5 cm d.b.h. in managed and unmanaged stands. We evaluated AGB-diversity relationships (species richness, Shannon-Wiener and Simpson indices), AGB-weighted mean community values ​​(CWM) of tree species functional traits (maximum height, leaf size, and wood density) and five measures of functional diversity (functional dispersion, functional richness, functional uniformity, functional diversity, and RaoQ index).Results: We reveal a consistent hump-shaped relationship between aboveground biomass and species richness in managen and unmanaged forest. CWM_Hmax was the most important predictor of AGB in both managed and unmanaged stands, which suggests that the mechanism that explains the above-ground biomass in these ecosystems is dominated by certain highly productive species in accordance of the mass-ratio hypothesis. There were no significant relationships between taxonomic diversity metrics (Shannon-Wiener and Simpson indices) or measures of functional diversity with AGB. The results support the mass-ratio hypothesis to explain the AGB variations.Conclusions: We concluded that diversity does not influence biomass production in the temperate mixed-species and uneven-aged forests of northern Mexico. These forests showed the classic hump-shaped productivity-species richness relationship, with biomass accumulation increasing at low to intermediate levels of species plant diversity and decreasing at high species richness. Functional diversity explains better forest productivity than classical diversity metrics.


2008 ◽  
Vol 48 (1) ◽  
pp. 53-66 ◽  
Author(s):  
Jürgen Aosaar ◽  
Veiko Uri

Halli lepa, hübriidlepa ja arukase biomassi produktsioon endistel põllumaadel The present study is based on four experimental sites, located in Southern-Estonia: hybrid alder and grey alder plantations located in Põlva county, and two sample plots of silver birch, located in Tartu county. The stand characteristics, above-ground biomass and current annual production (CAP) were estimated in order to evaluate production capacity of different tree species growing on abandoned agricultural lands. Due to fast growth and high biomass production capacity the most promising tree species for short-rotation forestry in Estonia is grey alder. The stem mass in the 13-years-old grey alder and hybrid alder stand was 63.4 t ha-1 and 40.0 t ha-1, respectively. However, the different biomass production is mainly affected by stand densities, 6170 trees per ha and 4080 trees per ha, respectively. During ageing, the differences between the alder stands diminish. At the age of 14, mean height and diameter at breast height were practically equal. Also the mean stem mass in the older, 13-year old stand, is almost equal: 10.3 kg in grey alder stand and 9.8 kg in hybrid alder stand. At a younger age, the mean stem mass was higher in grey alder stand, but later, at the age of 13, the mean stem mass has become almost the same (10.3 kg in grey alder stand and 9.8 kg in hybrid alder stand). The rotation period for hybrid alder is longer than for grey alder and bulk maturity will occur later. Silver birch is also a highly productive tree species and has a prospect for short-rotation forestry. The mean stem mass and annual current increment of 8-year-old silver birch stand was in same the magnitude as in the grey alder stand. Although the average stand diameter and height were lower in the silver birch stand than in the grey alder stand, it is compensated by the higher wood density of birch wood. The number of trees has affected silver birch stand production, the above-ground biomass in the very high density birch stand (35 600 trees per ha) was significantly lower than in the sparse stand (11 600 trees per ha), 22.8 t ha-1 and 31.2 t ha-1, respectively.


Beskydy ◽  
2016 ◽  
Vol 9 (1-2) ◽  
pp. 21-30 ◽  
Author(s):  
Kateřina Novotná ◽  
Karel Klem ◽  
Petr Holub ◽  
Barbora Rapantová ◽  
Otmar Urban

Drought represents one of the major factors limiting productivity of managed and natural ecosystems. Under natural field conditions drought is often associated with other stress factors such as high temperature and UV radiation, which may result in enhancement or vice versa alleviation of drought impact. Remote sensing methods have a large potential to evaluate impacts of drought on plant production at regional scale. The main objective of this study was to analyse the potential of ground-based measurement of spectral reflectance and thermal imaging for monitoring the impacts of drought and UV radiation on above-ground biomass production of mountain grassland ecosystem. Experimental rain-out shelters were used to manipulate incident precipitation and UV radiation for 7 weeks (May–July). A canopy spectral reflectance, thermal images, and total above-ground biomass were determined at the end of drought and UV treatment. Results show that drought led to a significant reduction of above-ground biomass, particularly under ambient UV radiation. In contrary, UV had only negligible effect on biomass production. Canopy temperature as well as selected spectral reflectance indices showed significant response to drought stress and also significant relationships to above-ground biomass. However, the relationship between canopy temperature and above-ground biomass is modified by UV radiation. Best prediction of changes in biomass caused by drought stress was provided by vegetation index NDVI.


2012 ◽  
Vol 91 (10) ◽  
pp. 948-953 ◽  
Author(s):  
Shigeru SATOH ◽  
Kimiharu ISHIZAWA ◽  
Yu MITSUI ◽  
Kazuya MINATO

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 456c-456
Author(s):  
Sanliang Gu ◽  
Leslie H. Fuchigami ◽  
Lailiang Cheng ◽  
Sung H. Guak ◽  
Charles C.H. Shin

Seedling plugs of `Early Girl' tomato plants (Lycopersicon esculentum Mill.) were potted in peatmoss and perlite (60:40% by volume) medium, fertilized with 8, 16, 24, or 32 g NutriCote Total controlled-release fertilizer (type 100, 13N–5.67P–10.79K plus micronutrients) per pot (2.81 L), and treated with 0%, 2.5%, 5%, or 7.5% antitranspirant GLK-8924 solution, at the four true-leaf stage. Plants were tipped at the second inflorescence and laterals were removed upon emergence. Flowering of both clusters were advanced by higher fertilization rates and depressed by GLK-8924. Increasing rates of fertilization increased flower and fruit number of the lower cluster and fruit set of upper cluster. GLK-8924 had no effect on flower number, fruit number, and fruit set. Fertilization increased the biomass production of all plant parts while GLK-8924 reduced the biomass production of leaves and fruit only. Root and stem biomass was not influenced by GLK-8924. The effect of GLK-8924 on fruit dry weight was dependent on the position of the cluster and GLK-8924 concentration. Fertilization did not interact with GLK-8924 to influence flowering, fruiting, and biomass production.


Sign in / Sign up

Export Citation Format

Share Document