Lake Kinneret watershed contamination transports - a GIS based hydrological model

2003 ◽  
Vol 48 (10) ◽  
pp. 63-70 ◽  
Author(s):  
A. Ostfeld ◽  
A. Pries

This paper describes the efforts and current achievements of developing a GIS based hydrological model for flow and contaminants transport within Lake Kinneret watershed. The proposed model is built of hydrological “input-output” physical response blocks for routing rainfall-runoff water quantity and quality in sub-watersheds, coupled further with a delineated GIS database. An illustrative example of the model capabilities is demonstrated.

2006 ◽  
Vol 3 (2) ◽  
pp. 285-297 ◽  
Author(s):  
R. G. Kamp ◽  
H. H. G. Savenije

Abstract. Artificial Neural Networks have proven to be good modelling tools in hydrology for rainfall-runoff modelling and hydraulic flow modelling. Representative data sets are necessary for the training phase in which the ANN learns the model's input-output relations. Good and representative training data is not always available. In this publication Genetic Algorithms are used to optimise training data sets. The approach is tested with an existing hydrological model in The Netherlands. The optimised training set resulted in significant better training data.


Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 58
Author(s):  
Ahmed Naseh Ahmed Hamdan ◽  
Suhad Almuktar ◽  
Miklas Scholz

It has become necessary to estimate the quantities of runoff by knowing the amount of rainfall to calculate the required quantities of water storage in reservoirs and to determine the likelihood of flooding. The present study deals with the development of a hydrological model named Hydrologic Engineering Center (HEC-HMS), which uses Digital Elevation Models (DEM). This hydrological model was used by means of the Geospatial Hydrologic Modeling Extension (HEC-GeoHMS) and Geographical Information Systems (GIS) to identify the discharge of the Al-Adhaim River catchment and embankment dam in Iraq by simulated rainfall-runoff processes. The meteorological models were developed within the HEC-HMS from the recorded daily rainfall data for the hydrological years 2015 to 2018. The control specifications were defined for the specified period and one day time step. The Soil Conservation Service-Curve number (SCS-CN), SCS Unit Hydrograph and Muskingum methods were used for loss, transformation and routing calculations, respectively. The model was simulated for two years for calibration and one year for verification of the daily rainfall values. The results showed that both observed and simulated hydrographs were highly correlated. The model’s performance was evaluated by using a coefficient of determination of 90% for calibration and verification. The dam’s discharge for the considered period was successfully simulated but slightly overestimated. The results indicated that the model is suitable for hydrological simulations in the Al-Adhaim river catchment.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 872
Author(s):  
Vesna Đukić ◽  
Ranka Erić

Due to the improvement of computation power, in recent decades considerable progress has been made in the development of complex hydrological models. On the other hand, simple conceptual models have also been advanced. Previous studies on rainfall–runoff models have shown that model performance depends very much on the model structure. The purpose of this study is to determine whether the use of a complex hydrological model leads to more accurate results or not and to analyze whether some model structures are more efficient than others. Different configurations of the two models of different complexity, the Système Hydrologique Européen TRANsport (SHETRAN) and Hydrologic Modeling System (HEC-HMS), were compared and evaluated in simulating flash flood runoff for the small (75.9 km2) Jičinka River catchment in the Czech Republic. The two models were compared with respect to runoff simulations at the catchment outlet and soil moisture simulations within the catchment. The results indicate that the more complex SHETRAN model outperforms the simpler HEC HMS model in case of runoff, but not for soil moisture. It can be concluded that the models with higher complexity do not necessarily provide better model performance, and that the reliability of hydrological model simulations can vary depending on the hydrological variable under consideration.


2013 ◽  
Vol 17 (11) ◽  
pp. 4441-4451 ◽  
Author(s):  
N. Kayastha ◽  
J. Ye ◽  
F. Fenicia ◽  
V. Kuzmin ◽  
D. P. Solomatine

Abstract. Often a single hydrological model cannot capture the details of a complex rainfall–runoff relationship, and a possibility here is building specialized models to be responsible for a particular aspect of this relationship and combining them to form a committee model. This study extends earlier work of using fuzzy committees to combine hydrological models calibrated for different hydrological regimes – by considering the suitability of the different weighting function for objective functions and different class of membership functions used to combine the specialized models and compare them with the single optimal models.


2013 ◽  
Vol 13 (3) ◽  
pp. 583-596 ◽  
Author(s):  
M. Coustau ◽  
S. Ricci ◽  
V. Borrell-Estupina ◽  
C. Bouvier ◽  
O. Thual

Abstract. Mediterranean catchments in southern France are threatened by potentially devastating fast floods which are difficult to anticipate. In order to improve the skill of rainfall-runoff models in predicting such flash floods, hydrologists use data assimilation techniques to provide real-time updates of the model using observational data. This approach seeks to reduce the uncertainties present in different components of the hydrological model (forcing, parameters or state variables) in order to minimize the error in simulated discharges. This article presents a data assimilation procedure, the best linear unbiased estimator (BLUE), used with the goal of improving the peak discharge predictions generated by an event-based hydrological model Soil Conservation Service lag and route (SCS-LR). For a given prediction date, selected model inputs are corrected by assimilating discharge data observed at the basin outlet. This study is conducted on the Lez Mediterranean basin in southern France. The key objectives of this article are (i) to select the parameter(s) which allow for the most efficient and reliable correction of the simulated discharges, (ii) to demonstrate the impact of the correction of the initial condition upon simulated discharges, and (iii) to identify and understand conditions in which this technique fails to improve the forecast skill. The correction of the initial moisture deficit of the soil reservoir proves to be the most efficient control parameter for adjusting the peak discharge. Using data assimilation, this correction leads to an average of 12% improvement in the flood peak magnitude forecast in 75% of cases. The investigation of the other 25% of cases points out a number of precautions for the appropriate use of this data assimilation procedure.


Soil Research ◽  
1983 ◽  
Vol 21 (2) ◽  
pp. 109 ◽  
Author(s):  
MJ Singer ◽  
PH Walker

The 20-100 mm portion of a yellow podzolic soil (Albaqualf) from the Ginninderra Experiment Station (A.C.T.) was used in a rainfall simulator and flume facility to elucidate the interactions between raindrop impact, overland water flow and straw cover as they affect soil erosion. A replicated factorial design compared soil loss in splash and runoff from 50 and 100 mm h-1 rainfall, the equivalent of 100 mm h-1 overland flow, and 50 and 100 mm h-1 rainfall plus the equivalent of 100 mm h-' overland flow, all at 0, 40 and 80% straw cover on a 9% slope. As rainfall intensity increased, soil loss in splash and runoff increased. Within cover levels, the effect of added overland flow was to decrease splash but to increase total soil loss. This is due to an interaction between raindrops and runoff which produces a powerful detaching and transporting mechanism within the flow known as rain-flow transportation. Airsplash is reduced, in part, because of the changes in splash characteristics which accompany changes in depths of runoff water. Rain-flow transportation accounted for at least 64% of soil transport in the experiment and airsplash accounted for no more than 25% of soil transport The effects of rainfall, overland flow and cover treatments, rather than being additive, were found to correlate with a natural log transform of the soil loss data.


1997 ◽  
Vol 119 (3) ◽  
pp. 478-485 ◽  
Author(s):  
M. Goldfarb ◽  
N. Celanovic

A lumped-parameter model of a piezoelectric stack actuator has been developed to describe actuator behavior for purposes of control system analysis and design, and in particular for control applications requiring accurate position tracking performance. In addition to describing the input-output dynamic behavior, the proposed model explains aspects of nonintuitive behavioral phenomena evinced by piezoelectric actuators, such as the input-output rate-independent hysteresis and the change in mechanical stiffness that results from altering electrical load. Bond graph terminology is incorporated to facilitate the energy-based formulation of the actuator model. The authors propose a new bond graph element, the generalized Maxwell resistive capacitor, as a lumped-parameter causal representation of rate-independent hysteresis. Model formulation is validated by comparing results of numerical simulations to experimental data.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Chao Zhang ◽  
Ru-bin Wang ◽  
Qing-xiang Meng

Parameter optimization for the conceptual rainfall-runoff (CRR) model has always been the difficult problem in hydrology since watershed hydrological model is high-dimensional and nonlinear with multimodal and nonconvex response surface and its parameters are obviously related and complementary. In the research presented here, the shuffled complex evolution (SCE-UA) global optimization method was used to calibrate the Xinanjiang (XAJ) model. We defined the ideal data and applied the method to observed data. Our results show that, in the case of ideal data, the data length did not affect the parameter optimization for the hydrological model. If the objective function was selected appropriately, the proposed method found the true parameter values. In the case of observed data, we applied the technique to different lengths of data (1, 2, and 3 years) and compared the results with ideal data. We found that errors in the data and model structure lead to significant uncertainties in the parameter optimization.


2021 ◽  
Vol 314 ◽  
pp. 05001
Author(s):  
Oussama Laassilia ◽  
Driss Ouazar ◽  
Ahmed Bouziane ◽  
Moulay Driss Hasnaoui

A deep understanding of the rainfall-runoff mechanism is essential to estimate the runoff generated in a given basin. In this regard, this paper aims to develop a continuous hydrological model of the Bouregreg watershed. The objective of this modelling is to evaluate the inflow to the Sidi Mohamed Ben Abdellah (SMBA) dam, located at the outlet of this basin. To this end, using the HEC-HMS model, the Soil Moisture Accounting (SMA) Loss Method was used to model infiltration losses. The SCS Unit hydrograph (SCS UH) and the Recession method were chosen as transform model and baseflow model, respectively. As a result, the comparison shows an acceptable agreement between observed and simulated flow in terms of streamflow distribution and peak values (NSE=0.57, R2=0.58). During validation, the model retained its ability to sufficiently reproduce the rainfall-runoff mechanism of the studied basin with a slight overestimation of peaks (NSE=0.61, R2=0.60). This study allows to assess and predict the inter-annual and intra-annual variation of the SMBA dam reservoir’ inflows, and therefore to forecast the climate change impact on this basin.


Author(s):  
P. S. Georgiou ◽  
S. N. Yaliraki ◽  
E. M. Drakakis ◽  
M. Barahona

We introduce a mathematical framework for the analysis of the input–output dynamics of externally driven memristors. We show that, under general assumptions, their dynamics comply with a Bernoulli differential equation and hence can be nonlinearly transformed into a formally solvable linear equation. The Bernoulli formalism, which applies to both charge- and flux-controlled memristors when either current or voltage driven, can, in some cases, lead to expressions of the output of the device as an explicit function of the input. We apply our framework to obtain analytical solutions of the i – v characteristics of the recently proposed model of the Hewlett–Packard memristor under three different drives without the need for numerical simulations. Our explicit solutions allow us to identify a dimensionless lumped parameter that combines device-specific parameters with properties of the input drive. This parameter governs the memristive behaviour of the device and, consequently, the amount of hysteresis in the i – v . We proceed further by defining formally a quantitative measure for the hysteresis of the device, for which we obtain explicit formulas in terms of the aforementioned parameter, and we discuss the applicability of the analysis for the design and analysis of memristor devices.


Sign in / Sign up

Export Citation Format

Share Document