Full-scale application of the BABE® technology

2004 ◽  
Vol 50 (7) ◽  
pp. 87-96 ◽  
Author(s):  
S. Salem ◽  
D.H.J.G. Berends ◽  
H.F. van der Roest ◽  
R.J. van der Kuij ◽  
M.C.M. van Loosdrecht

Bio-augmentation can be used to obtain nitrification in activated sludge processes that operate at ub-optimal solid retention times. A side-stream process, the so-called BABE® process that incorporates Nremoval and augmentation of nitrifiers has been developed. The principle is to implement a nitrification reactor in the sludge return line, the so-called BABE reactor. This reactor can be fed with an internal N-rich flow (e.g. effluent from the sludge treatment). Hence the nitrification capacity of an activated sludge process can be augmented by the addition of nitrifiers cultivated in the BABE reactor. A full-scale test of the BABE technology has been at the treatment plant Garmerwolde in Groningen, the Netherlands. The set-up allowed comparing between three different lines: with the BABE reactor, without rejectwater and with untreated rejectwater. Based on this, the two important tasks (N-removal and inoculation) performed by the BABE reactor could be quantified. The results of the practical work in Garmerwolde showed a higher nitrification rate in the water line where the BABE reactor was implemented and also lower effluent ammonia. The experiments on a practical scale have demonstrated univocally the effective and stable operation of the BABE technology. In addition, sludge samples in different streams as well as from the BABE reactor were analysed with FISH technique. The FISH results illustrated the augmentation effect of the BABE reactor on the stream with the BABE reactor. A mathematical model, based on ASM1 model and implemented in AQUASIM was developed and used for simulating the treatment plant of Garmerwolde. The simulation results indicated that better effect of the BABE technology is expected at lower ambient temperatures and smaller volume of the BABE reactor. The BABE reactor could also allow for providing more space for de-nitrification in the main water line when nitrification is efficient enough.

2004 ◽  
Vol 48 (11-12) ◽  
pp. 419-428 ◽  
Author(s):  
L. Larrea ◽  
A. Abad ◽  
J. Gayarre

The effect on NH4-N removal rates in nitrification biofilters of filtered biodegradable COD and particulate COD leaving predenitrification biofilters was studied in a lab scale plant configured with the separated system of biofilters for secondary nitrogen removal from urban wastewaters. Applying a typical COD load of 11 kg/m3.day to the predenitrification biofilter and maximizing its COD removal by adding nitrates or by operating an improved control of the internal recycle, only 60% removal of filtered biodegradable COD was found. This value corresponds to the complete removal of the readily biodegradable substrate (30% of influent filtered COD) and 36% of filtered slowly biodegradable substrate (50% of influent COD). The remaining 64% of the latter entered the nitrification biofilter, causing competition between heterotrophs and nitrifiers for dissolved oxygen in the inner layers of the biofilm. Consequently the nitrification rate had relatively low values (0.5 kgN/m3.d) at 14°C despite using dissolved oxygen levels of 6 mg/l. This behaviour may explain the lower nitrification rates obtained in some cases of nitrification biofilters compared to those in tertiary nitrification after activated sludge processes. The particulate COD entering the nitrification biofilter is associated with the suspended solids leaving the denitrification biofilter which are adsorbed by the external layers of the biofilm, increasing its thickness. The activity of the nitrifiers was affected because of a lack of oxygen when the thickness was left to grow considerably. Therefore no significant particulate COD effect is expected to occur as long as backwashing is carried out with the appropriate frequency.


1999 ◽  
Vol 39 (4) ◽  
pp. 93-102 ◽  
Author(s):  
L. J. S. Lukasse ◽  
K. J. Keesman ◽  
A. Klapwijk ◽  
G. van Straten

Four control strategies for N-removal in alternating activated sludge plants (ASP's) are compared: 1. timer-based, 2. switching the aeration on/off when depletion of nitrate/ammonium is detected, 3. switching the aeration on/off when ammonium crosses an upper/lower-bound, 4. the newly developed adaptive receding horizon optimal controller (ARHOC) as presented in Lukasse et al. (1997). The comparison is made by simulating the controllers' application to an alternating continuously-mixed activated sludge reactor preceded by a small anoxic reactor for predenitrification. The biological processes in the reactors are modelled by the activated sludge model no. 1. Realistic influent patterns, measured at a full-scale wastewater treatment plant, are used. The results show that three totally different controllers (timer-based, NH4-bounds based and ARHOC) can achieve a more or less equal effluent quality, if tuned optimally. The difference mainly occurs in the sensitivity to suboptimal tunings. The timer-based strategy has a higher aeration demand. The sensitivity of the ARHOC controller to sub-optimal tuning, known measurement time delays and changing plant loads is significantly less than that of the other controllers. Also its tuning is more natural and explicit.


2014 ◽  
Vol 70 (10) ◽  
pp. 1709-1716 ◽  
Author(s):  
C. Remy ◽  
M. Boulestreau ◽  
B. Lesjean

For improved exploitation of the energy content present in the organic matter of raw sewage, an innovative concept for treatment of municipal wastewater is tested in pilot trials and assessed in energy balance and operational costs. The concept is based on a maximum extraction of organic matter into the sludge via coagulation, flocculation and microsieving (100 μm mesh size) to increase the energy recovery in anaerobic sludge digestion and decrease aeration demand for carbon mineralisation. Pilot trials with real wastewater yield an extraction of 70–80% of total chemical oxygen demand into the sludge while dosing 15–20 mg/L Al and 5–7 mg/L polymer with stable operation of the microsieve and effluent limits below 2–3 mg/L total phosphorus. Anaerobic digestion of the microsieve sludge results in high biogas yields of 600 NL/kg organic dry matter input (oDMin) compared to 430 NL/kg oDMin for mixed sludge from a conventional activated sludge process. The overall energy balance for a 100,000 population equivalent (PE) treatment plant (including biofilter for post-treatment with full nitrification and denitrification with external carbon source) shows that the new concept is an energy-positive treatment process with comparable effluent quality than conventional processes, even when including energy demand for chemicals production. Estimated operating costs for electricity and chemicals are in the same range for conventional activated sludge processes and the new concept.


2014 ◽  
Vol 9 (2) ◽  
pp. 215-224 ◽  
Author(s):  
Anneli Andersson Chan ◽  
Niklas Johansson ◽  
Magnus Christensson

Many wastewater treatment plants need to improve their nitrogen removal due to stricter requirements and increasing loads. This often means larger bioreactor volumes, which can be very expensive and is sometimes impossible if space is limited. Therefore, there is a need for compact hybrid solutions that can increase capacity within existing volumes. Two full-scale demonstration projects using moving bed biofilm reactor (MBBR) technology has proven to be an efficient way to treat nitrogen in existing volumes at Sundet wastewater treatment plant in Växjö. Increased nitrification and denitrification capacity in parts of the main stream were demonstrated through the Hybas™ process, a combination of MBBR and activated sludge using the integrated fixed-film activated sludge technology. The ANITA™ Mox process, using autotrophic N-removal through anaerobic ammonium oxidation (anammox), provided high nitrogen removal for the sludge liquor. Data collected on-site for over a year are analyzed and compared with the performance of conventional treatment systems. These two full-scale demonstration projects have been a successful learning experience in identifying and correcting both process and operational issues, which may not have arisen at pilot scale. The set objectives in terms of nitrogen removal were met for both processes and design modifications have been identified that will improve future operation at Sundet WWTP.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Young H. Yoon ◽  
Jae R. Park ◽  
Sang W. Ahn ◽  
Kwang B. Ko ◽  
Kyung J. Min ◽  
...  

Hybrid Activated Sludge Process (HASP) with IMET was developed and applied to an activated sludge process for the advanced nutrient treatment in Korea. The characteristics of nitrogen removal from the HASP were investigated through a kinetic study by batch-type experiment. Online DB analysis produced from the IMET was conducted for the nutrient removal performance in the field demonstration plant treating 10,000 m3/day in G city of Korea. In this paper, we aimed to determine the effect of increasing NHM4+-N load on the specific nitrification rate (SNR) and the specific denitrification rate (SDNR) through a batch-type experiment, and to estimate the net reaction time for the phase-transfer rate using online DB analysis in the HASP operation. Experimental results include: (1) both the nitrification and denitrification followed first-order kinetics; (2) the maximum SNR and SDNR were 4.0301 mgN/gVSS·hr and 2.785 mgN/gVSS·hr, respectively; (3) comparison of reaction rates between nitrification and denitrification from the non-linear regression analysis found that nitrification rate was higher than denitrification.


1996 ◽  
Vol 33 (1) ◽  
pp. 311-323 ◽  
Author(s):  
A. Witteborg ◽  
A. van der Last ◽  
R. Hamming ◽  
I. Hemmers

A method is presented for determining influent readily biodegradable substrate concentration (SS). The method is based on three different respiration rates, which can be measured with a continuous respiration meter which is operated in a cyclic way. Within the respiration meter nitrification is inhibited through the addition of ATU. Simulations were used to develop the respirometry set-up and decide upon the experimental design. The method was tested as part of a large measurement programme executed at a full-scale plant. The proposed respirometry set-up has been shown to be suitable for a semi-on-line determination of an influent SS which is fully based on the IAWQ #1 vision of the activated sludge process. The YH and the KS play a major role in the principle, and should be measured directly from the process.


1998 ◽  
Vol 37 (12) ◽  
pp. 121-129 ◽  
Author(s):  
S. Isaacs ◽  
Terry Mah ◽  
S. K. Maneshin

A novel method is described to automatically estimate several key parameters affecting denitrification in activated sludge processes: the nitrate concentration, the denitrification capacity, and the maximum (substrate unlimited) and actual denitrification rates. From these, the concentration of active denitrifying microorganisms and the quality of available organic substrate pool can be estimated. Additionally, a modification of the method allows the determination of the efficacy of various carbon substrates to enhance denitrification, and this can be used to determine optimal dosing rates of an external carbon source. The method is based on measurements of either fluorescence or redox potential (ORP) in an isolated mini-reactor, the Biological Activity Meter (BAM), situated in the anoxic zone of the wastewater treatment plant. Advantages of the method are that it is in situ, operating at the same temperature as in the measured anoxic zone, requires no pumps or pipes for mixed liquor sampling, consumes little or no reagents, and uses measurement signals which are instantaneous and low maintenance, one of which provides a direct measure of biological activity.


1997 ◽  
Vol 35 (6) ◽  
pp. 37-44 ◽  
Author(s):  
Boran Zhang ◽  
Kazuo Yamamoto ◽  
Shinichiro Ohgaki ◽  
Naoyuki Kamiko

Activated sludges taken from full-scale membrane separation processes, building wastewater reuse system (400m3/d), and two nightsoil treatment plants (50m3/d) as well as laboratory scale membrane separation bioreactor (0.062m3/d) were analyzed to characterize membrane separation activated sludge processes (MSAS). They were also compared with conventional activated sludges(CAS) taken from municipal wastewater treatment plants. Specific nitrification activity in MSAS processes averaged at 2.28gNH4-N/kgMLSS.h were higher than that in CAS processes averaged at 0.96gNH4-N/kgMLSS.h. The denitrification activity in both processes were in the range of 0.62-3.2gNO3-N/kgMLSS.h without organic addition and in the range of 4.25-6.4gNO3-N/kgMLSS.h with organic addition. The organic removal activity in nightsoil treatment process averaged at 123gCOD/kgMLSS.h which was significantly higher than others. Floc size distributions were measured by particle sedimentation technique and image analysis technique. Flocs in MSAS processes changed their sizes with MLSS concentration changes and were concentrated at small sizes at low MLSS concentration, mostly less than 60 μm. On the contrary, floc sizes in CAS processes have not much changed with MLSS concentration changes and they were distributed in large range. In addition, the effects of floc size on specific nitrification rate, denitrification rate with and without organic carbon addition were investigated. Specific nitrification rate was decreased as floc size increased. However, little effect of floc size on denitrification activity was observed.


2012 ◽  
Vol 7 (1) ◽  
Author(s):  
S. S. Fatima ◽  
S. Jamal Khan

In this study, the performance of wastewater treatment plant located at sector I-9 Islamabad, Pakistan, was evaluated. This full scale domestic wastewater treatment plant is based on conventional activated sludge process. The parameters which were monitored regularly included total suspended solids (TSS), mixed liquor suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), biological oxygen demand (BOD), and chemical oxygen demand (COD). It was found that the biological degradation efficiency of the plant was below the desired levels in terms of COD and BOD. Also the plant operators were not maintaining consistent sludge retention time (SRT). Abrupt discharge of MLSS through the Surplus Activated sludge (SAS) pump was the main reason for the low MLSS in the aeration tank and consequently low treatment performance. In this study the SRT was optimized based on desired MLSS concentration between 3,000–3,500 mg/L and required performance in terms of BOD, COD and TSS. This study revealed that SRT is a very important operational parameter and its knowledge and correct implementation by the plant operators should be mandatory.


2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document