Combined UASB reactor and DAF/BF/anoxic/aerobic process for the removal of high-concentration organic matter and nutrients from slurry-type swine waste

2004 ◽  
Vol 49 (5-6) ◽  
pp. 199-205 ◽  
Author(s):  
B.U. Kim ◽  
C.H. Won ◽  
J.M. Rim

This research aimed to effectively remove high-concentration organic matter and nutrients from slurry-type swine waste using a combined upflow anaerobic sludge blanket reactor with the dissolved air flotation/aerobic submerged biofilm/anoxic/aerobic process. The upflow anaerobic sludge blanket reactor was operated at an organics volumetric loading rate of 3.2Ð6.1 kg COD/m3/day, and the removal rates of COD were 53.9-65.5%. The removal rate of COD of the overall process was more than 99%. In the aerobic submerged biofilm, over 95% of ammonium nitrogen was removed at a volumetric loading rate of 0.08-0.16 kg NH4+-N/m3/day. The specific denitrification rate was 0.257 g NO3-N/g MLVSS/day and the removal rate of total nitrogen was 86.7%. Phosphorus was removed by flocculation in the dissolved air flotation process, and 0.16 g of PO4-P was removed by 1 g of ferric ion.

2000 ◽  
Vol 42 (3-4) ◽  
pp. 239-246 ◽  
Author(s):  
J.M. Rim ◽  
D.J. Han

This research aims to effectively remove nutrients in swine waste by a combined process of upflow anaerobic sludge blanket (UASB) and biofilm process. For effective removal of nutrients, both anaerobic and anoxic reactors were constructed consecutively within a single anaerobic/denitrification (SAD) reactor to which aerobic reactor for nitrification was connected. The total reactor was operated within range of 0.4 to 3.1 kg COD/m3/d of organics volumetric loading rate (VLR) and the removal rates of TCOD were 80 to 95%. Ammonia nitrogen was removed over 90% in VLR of less than 0.1 kg N/m3/d but removal rate was reduced to 70% in VLR of over 0.6 kg N/m3/d. However, complete denitrification was observed in all VLRs, which might be due to the maintenance of optimal temperature, sufficient inner carbon source, and use of NOx as an electron acceptor by anaerobic and anoxic microorganisms.


2001 ◽  
Vol 44 (4) ◽  
pp. 83-88 ◽  
Author(s):  
V. Del Nery ◽  
M. H.Z. Damianovic ◽  
F. G. Barros

This work studied the performance of the dissolved air flotation (DAF) system and the start-up and the operation of two 450 m3 UASB reactors in a poultry slaughterhouse in Sorocaba, Brazil. The DAF presented reduction efficiency of grease and fats, suspended solids and COD 50% higher. The reactors were seeded with non-adapted sludge. The average COD of the reactor influent was 2,695mg/L; and the initial organic loading rate (OLR) and the initial sludge loading rate at the start-up were 0.51 kg COD/m3.day and 0.04 kg COD/kg VTS.day, respectively. The start-up period was 144 days. During this time the reactor flow rate and OLR were gradually increased. At the reactor start-up, the maximum OLR value was 2.1 kg COD/m3.day, the COD reduction was higher than 80%, and the concentration of volatile fatsty acids (VFA) was below 100mg/L. The COD reductions, considering the reactor effluent raw COD and soluble COD were similar throughout the period studied in both reactors. The reactor effluent raw COD was approximately 10% higher than the soluble COD until the 225th day of operation. From the 225th day of operation this value increased 20%-30% due to the sludge washout. The effluent soluble COD reduction, the effluent VFA concentration and the operational stability attested the good performance of UASB reactors in poultry slaughterhouse wastewater treatment.


1997 ◽  
Vol 36 (6-7) ◽  
pp. 73-82 ◽  
Author(s):  
Sheng-Shung Cheng ◽  
Chiou-Yuan Ho ◽  
Jer-Horng Wu

A pilot-scale upflow anaerobic sludge blanket (UASB) reactor was employed to treat the wastewater of a purified-terephthalic-acid (PTA) manufacturing factory. The performance of UASB reactor in terms of COD removal was achieved 62% at the volumetric loading rate of 2.93 kg COD / m3/day. One of the major constituents, p-toluic acid in PTA wastewater was the refractory component due to the methyl substituent on the aromatic ring, which restricted the biodegradation performance. Moreover, from our study, it was surprising that high concentration of acetic acid would retard the degradation of aromatics in the sludge bed. A control strategy of acetic acid level in the sludge bed was suggested during the start-up period. Comparison of the anaerobic biodegradability of aromatic substituents in PTA wastewater was concluded as the following sequence: –COOH > –CHO ≥ –CH3 in terms of the derivative functional groups based on the benzoic acid. Observation of bacterial population of the sludge granules showed high diversity of syntrophic structure on the biogranular surface as well as acetoclastic methanogens.


2006 ◽  
Vol 41 (4) ◽  
pp. 437-448 ◽  
Author(s):  
Yee Ying Jennifer Tan ◽  
Mohd. Ali Hashim ◽  
K.B. Ramachandran

Abstract In this study, an upflow anaerobic sludge blanket (UASB) bioreactor was sequentially subjected to high-strength synthetic, low-strength synthetic and domestic wastewaters. From COD removal data, supported by volumetric loading rate, hydraulic retention time, pH and qualitative biogas production data, it was observed that the biomass in the bioreactor took about twice the time required to acclimatize to a change in substrate characteristics or composition compared to a much more drastic quantitative change, i.e., more than 95% difference, in substrate concentration. As the initial experiment coincided with the bioreactor start-up, it could also be concluded that the feeding regime did not shorten the overall start-up time of a UASB bioreactor meant to treat domestic wastewater, but its eventual success was probably more assured.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 512
Author(s):  
Jeremiah Chimhundi ◽  
Carla Hörstmann ◽  
Evans M. N. Chirwa ◽  
Hendrik G. Brink

The main objective of this study was to achieve the continuous biorecovery and bioreduction of Pb(II) using an industrially obtained consortia as a biocatalyst. An upflow anaerobic sludge blanket reactor was used in the treatment process. The bioremediation technique that was applied made use of a yeast extract as the microbial substrate and Pb(NO3)2 as the source of Pb(II). The UASB reactor exhibited removal efficiencies of between 90 and 100% for the inlet Pb concentrations from 80 to 2000 ppm and a maximum removal rate of 1948.4 mg/(L·d) was measured. XRD and XPS analyses of the precipitate revealed the presence of Pb0, PbO, PbS and PbSO4. Supporting experimental work carried out included growth measurements, pH, oxidation–reduction potentials and nitrate levels.


2011 ◽  
Vol 63 (5) ◽  
pp. 877-884 ◽  
Author(s):  
P. Mijalova Nacheva ◽  
M. Reyes Pantoja ◽  
E. A. Lomelí Serrano

The performance of an upflow anaerobic sludge blanket (UASB) reactor operated at ambient temperature (20.9–25.2°C) was analysed for the treatment of slaughterhouse wastewater previously pre-treated for solid separation. The experimental work was carried out in a reactor with 15 L effective volume. Four organic loads were applied and the process performance was evaluated. The COD removal rate increased with the load rise from 4 to 15 kg COD.m−3.d−1. Removal efficiencies of 90% were obtained with a load of 15 kg COD.m−3.d−1. The entrapment of suspended solids in the sludge blanket was greater in proportion during the first two stages due to the low upflow velocities used when loads of 4 and 7 kg COD.m−3.d−1 were evaluated. This phenomenon did not affect the structure of the biological grains or their methanogenic activity. More than 50% of the organic nitrogen was degraded, causing a 3% increase of ammonia concentration. The concentrations of the volatile fatty acids were not high and the wastewater alkalinity was enough to prevent acidification. The yield coefficient of methane production increased with the load rise, reaching 0.266 m3/kg CODremoved at 15 kg COD.m−3.d−1 organic load. The UASB reactor is a good option for the biological treatment of pre-treated slaughterhouse wastewater. However, additional treatment is required in order to accomplish the water quality requirements in discharges to water bodies.


2011 ◽  
Vol 71-78 ◽  
pp. 2103-2106
Author(s):  
Ming Yue Zheng ◽  
Ming Xia Zheng ◽  
Kai Jun Wang ◽  
Hai Yan

The performance of upflow anaerobic sludge blanket (UASB) fed with three metabolic intermediate (acetate, ethanol, and propionate) respectively was studied. The degradation of metabolic intermediate were investigated to discuss the reason for propionate inhibition problem in anaerobic treatment. The hydraulic retention time (HRT) in the reactors started with 8.0h.The yield rate of biogas were 237ml/gCOD, 242ml/gCOD, 218ml/gCOD for acetate, ethanol and propionate, respectively when finishing start-up under OLR of 5.0 kgCOD/(m3·d) (HRT=9.6h).The HRT remained constant 9.6h,and the substrate concentration was gradually increased from 1,000 to 16,000mg/L as COD,and the organic loading rates(OLR) was from 3.0 to 40.0 kgCOD/(m3·d).The maximum propionate concentration was 41.6 gHPr-COD/L at the organic loading rate of 43.9 kgCOD/(m3·d) (HRT, 9.6h) as well as acetate and ethanol.


Sign in / Sign up

Export Citation Format

Share Document