Recent findings on sinks for sulfide in gravity sewer networks

2006 ◽  
Vol 54 (6-7) ◽  
pp. 127-134 ◽  
Author(s):  
A.H. Nielsen ◽  
T. Hvitved-Jacobsen ◽  
J. Vollertsen

Sulfide buildup in sewer networks is associated with several problems, including health impacts, corrosion of sewer structures and odor nuisance. In recent years, significant advances in the knowledge of the major processes governing sulfide buildup in sewer networks have been made. This paper summarizes this newly obtained knowledge and emphasizes important implications of the findings. Model simulations of the in-sewer processes important for the sulfur cycle showed that sulfide oxidation in the wetted biofilm is typically the most important sink for dissolved sulfide in gravity sewers. However, sulfide emission and thereby potential hydrogen sulfide buildup in the sewer atmosphere is of particular importance in sewers constructed with large diameter pipes, in sewers constructed with steep slopes and in sewers conveying low pH wastewater. Precipitation of metal sulfides is only important when the sulfide concentration in the wastewater is low; i.e. less than 1 g S m−3.

2020 ◽  
Vol 12 (16) ◽  
pp. 6610 ◽  
Author(s):  
Arnold Ramírez-Rueda ◽  
Antonio Velasco ◽  
Armando González-Sánchez

The oxygenic photosynthetic activity (OPA) of an alkaliphilic microalgae consortium was evaluated at different concentrations of dissolved sulfide under room temperature and well-defined conditions of irradiance and pH in a tubular closed photobioreactor. The kinetic assays showed that it was optimal at a sulfide concentration of 3.2 mg/L under an external photosynthetically active radiation of 50 and 120 μE/m2 s together with a pH of 8.5 and 9.2. In contrast, the oxygenic photosynthetic activity was insignificant at 15 μE/m2 s with a pH of 7.3, both in the absence and presence of sulfide. Consecutive pulse additions of dissolved sulfide evidenced that the accumulation rate of dissolved oxygen was decreased by the spontaneous chemical oxidation of sulfide with dissolved oxygen in alkaline culture media, mainly at high sulfide levels. At 3.2 mg/L of sulfide, the oxygenic photosynthetic activity was improved by around 60% compared to the treatment without sulfide at external irradiances of 120 μE/m2 s, 30 °C, and pH of 8.5 and 9.2. Additionally, an even higher OPA enhancement (around 85%) was observed in the same previous conditions but using 16 mg/L of sulfide. Thiosulfate was the major end-product of sulfide by oxic chemical reaction, both in biotic and abiotic assays with yields of 0.80 and 0.68, respectively.


2005 ◽  
Vol 52 (3) ◽  
pp. 201-208 ◽  
Author(s):  
A.H. Nielsen ◽  
C. Yongsiri ◽  
T. Hvitved-Jacobsen ◽  
J. Vollertsen

A model concept for prediction of sulfide buildup in sewer networks is presented. The model concept is an extension to – and a further development of – the WATS model (Wastewater Aerobic-anaerobic Transformations in Sewers), which has been developed by Hvitved-Jacobsen and co-workers at Aalborg University. In addition to the sulfur cycle, the WATS model simulates changes in dissolved oxygen and carbon fractions of different biodegradability. The sulfur cycle was introduced via six processes: 1. sulfide production taking place in the biofilm covering the permanently wetted sewer walls; 2. biological sulfide oxidation in the permanently wetted biofilm; 3. chemical and biological sulfide oxidation in the water phase; 4. sulfide precipitation with metals present in the wastewater; 5. emission of hydrogen sulfide to the sewer atmosphere and 6. adsorption and oxidation of hydrogen sulfide on the moist sewer walls where concrete corrosion may take place.


2021 ◽  
Vol 9 (2) ◽  
pp. 429
Author(s):  
Rikuan Zheng ◽  
Shimei Wu ◽  
Chaomin Sun

Sulfur cycling is primarily driven by sulfate reduction mediated by sulfate-reducing bacteria (SRB) in marine sediments. The dissimilatory sulfate reduction drives the production of enormous quantities of reduced sulfide and thereby the formation of highly insoluble metal sulfides in marine sediments. Here, a novel sulfate-reducing bacterium designated Pseudodesulfovibrio cashew SRB007 was isolated and purified from the deep-sea cold seep and proposed to represent a novel species in the genus of Pseudodesulfovibrio. A detailed description of the phenotypic traits, phylogenetic status and central metabolisms of strain SRB007 allowed the reconstruction of the metabolic potential and lifestyle of a novel member of deep-sea SRB. Notably, P. cashew SRB007 showed a strong ability to resist and remove different heavy metal ions including Co2+, Ni2+, Cd2+ and Hg2+. The dissimilatory sulfate reduction was demonstrated to contribute to the prominent removal capability of P. cashew SRB007 against different heavy metals via the formation of insoluble metal sulfides.


2003 ◽  
Vol 37 (17) ◽  
pp. 3853-3858 ◽  
Author(s):  
Asbjørn H. Nielsen ◽  
Jes Vollertsen ◽  
Thorkild Hvitved-Jacobsen

Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 263
Author(s):  
Federico Aulenta ◽  
Enza Palma ◽  
Ugo Marzocchi ◽  
Carolina Cruz Viggi ◽  
Simona Rossetti ◽  
...  

In anaerobic sediments, microbial degradation of petroleum hydrocarbons is limited by the rapid depletion of electron acceptors (e.g., ferric oxide, sulfate) and accumulation of toxic metabolites (e.g., sulfide, following sulfate reduction). Deep-sea sediments are increasingly impacted by oil contamination, and the elevated hydrostatic pressure (HP) they are subjected to represents an additional limitation for microbial metabolism. While the use of electrodes to support electrobioremediation in oil-contaminated sediments has been described, there is no evidence on their applicability for deep-sea sediments. Here, we tested a passive bioelectrochemical system named ”oil-spill snorkel” with two crude oils carrying different alkane contents (4 vs. 15%), at increased or ambient HP (10 vs. 0.1 MPa). Snorkels enhanced alkanes biodegradation at both 10 and 0.1 MPa within only seven weeks, as compared to nonconductive glass controls. Microprofiles in anaerobic, contaminated sediments indicated that snorkels kept sulfide concentration to low titers. Bulk-sediment analysis confirmed that sulfide oxidation by snorkels largely regenerated sulfate. Hence, the sole application of snorkels could eliminate a toxicity factor and replenish a spent electron acceptor at increased HP. Both aspects are crucial for petroleum decontamination of the deep sea, a remote environment featured by low metabolic activity.


1999 ◽  
Vol 202 (17) ◽  
pp. 2245-2257 ◽  
Author(s):  
D. Julian ◽  
F. Gaill ◽  
E. Wood ◽  
A.J. Arp ◽  
C.R. Fisher

Vestimentiferan tubeworms have no mouth or gut, and the majority of their nutritional requirements are provided by endosymbiotic bacteria that utilize hydrogen sulfide oxidation to fix CO(2) into organic molecules. It has been assumed that all vestimentiferans obtain the sulfide, O(2) and CO(2) needed by the bacteria across the plume (gill) surface, but some live in locations where very little sulfide is available in the sea water surrounding the plume. We propose that at least some of these vestimentiferans can grow a posterior extension of their body and tube down into the sea-floor sediment, and that they can use this extension, which we call the ‘root’, to take up sulfide directly from the interstitial water. In this study of the vestimentiferan Lamellibrachia sp., found at hydrocarbon seeps in the Gulf of Mexico at depths of approximately 700 m, we measured seawater and interstitial sulfide concentrations in the hydrocarbon seep habitat, determined the structural characteristics of the root tube using transmission electron microscopy, characterized the biochemical composition of the tube wall, and measured the sulfide permeability of the root tube. We found that, while the sulfide concentration is less than 1 (μ)mol l(−)(1) in the sea water surrounding the gills, it can be over 1.5 mmol l(−)(1) at a depth of 10–25 cm in sediment beneath tubeworm bushes. The root tube is composed primarily of giant (β)-chitin crystallites (12–30 % of total mass) embedded in a protein matrix (50 % of total mass). Root tubes have a mean diameter of 1.4 mm, a mean wall thickness of 70 (μ)m and can be over 20 cm long. The tubeworm itself typically extends its body to the distal tip of the root tube. The root tube wall was quite permeable to sulfide, having a permeability coefficient at 20 degrees C of 0. 41×10(−)(3)cm s(−)(1), with root tube being 2.5 times more permeable to sulfide than trunk tube of the same diameter. The characteristics of the root suggest that it reaches down to the higher sulfide levels present in the deeper sediment and that it functions to increase the surface area available for sulfide uptake in a manner analogous to a respiratory organ.


2003 ◽  
Vol 47 (12) ◽  
pp. 183-189 ◽  
Author(s):  
S.K. Khanal ◽  
C. Shang ◽  
J.-C. Huang

In this study, oxidation-reduction potential (ORP) was used as a controlling parameter to regulate oxygen dosing to the recycled biogas for online sulfide oxidation in an upflow anaerobic filter (UAF) system. The UAF was operated with a constant influent COD of 18,000 mg/L, but with different influent sulfates of 1000, 3000 and 6000 mg/L. The reactor was initially operated under a natural ORP of -290 mV (without oxygen injection), and was then followed by oxygenation to raise its ORP by 25 mV above the natural level for each influent sulfate condition. At 6,000 mg/L sulfate without oxygen injection, the dissolved sulfide reached 733.8 mg S/L with a corresponding free sulfide of 250.3 mg S/L, thus showing a considerable inhibition to methanogens. Upon oxygenation to raise its ORP to -265 mV (i.e., a 25 mV increase), the dissolved sulfide was reduced by more than 98.5% with a concomitant 45.9% increase of the methane yield. Under lower influent sulfate levels of 1,000 and 3,000 mg/L, the levels of sulfides produced, even under the natural ORP, did not impose any noticeable toxicity to methanogens. Upon oxygenation to raise the ORP by +25 mV, the corresponding methane yields were actually reduced by 15.5% and 6.2%, respectively. However, such reductions were not due to the adverse impact of the elevated ORP; instead, they were due to a diversion of some organic carbon to support the facultative activities inside the reactor as a result of excessive oxygenation. In other words, to achieve satisfactory sulfide oxidation for the lower influent sulfate conditions, it was not necessary to raise the ORP by as much as +25 mV. The ORP increase actually needed depended on both the influent sulfate and also actual wastewater characteristics. This study had proved that the ORP controlled oxygenation was reliable for achieving consistent online sulfide control.


1978 ◽  
Vol 10 (1) ◽  
pp. 29-34 ◽  
Author(s):  
V. V. Chelyshev ◽  
V. G. Burdukovskii ◽  
B. N. Gubashov ◽  
V. V. Kirichenko

Metallurgist ◽  
1987 ◽  
Vol 31 (10) ◽  
pp. 320-321
Author(s):  
V. M. Ryabov ◽  
L. A. Usova

Sign in / Sign up

Export Citation Format

Share Document