Re-use of winery wastewaters for biological nutrient removal

2007 ◽  
Vol 56 (2) ◽  
pp. 95-102 ◽  
Author(s):  
L. Rodríguez ◽  
J. Villaseñor ◽  
I.M. Buendía ◽  
F.J. Fernández

The aim of this study was to evaluate the feasibility of the re-use of the winery wastewater to enhance the biological nutrient removal (BNR) process. In batch experiments it was observed that the addition of winery wastewater mainly enhanced the nitrogen removal process because of the high denitrification potential (DNP), of about 130 mg N/g COD, of the contained substrates. This value is very similar to that obtained by using pure organic substrates such as acetate. The addition of winery wastewater did not significantly affect either phosphorus or COD removal processes. Based on the experimental results obtained, the optimum dosage to remove each mg of N–NO3 was determined, being a value of 6.7 mg COD/mg N–NO3. Because of the good properties of the winery wastewater to enhance the nitrogen removal, the viability of its continuous addition in an activated sludge pilot-scale plant for BNR was studied. Dosing the winery wastewater to the pilot plant a significant increase in the nitrogen removal was detected, from 58 to 75%. The COD removal was slightly increased, from 89 to 95%, and the phosphorus removal remained constant.

1997 ◽  
Vol 36 (12) ◽  
pp. 61-68 ◽  
Author(s):  
Eun Lee Sang ◽  
Soo Kim Kwang ◽  
Hwan Ahn Jae ◽  
Whoe Kim Chang

Bench scale experiments were carried out with four biological nutrient removal(BNR) units, A/O, A2/O, Phostrip and P/L units, to investigate the behavior of phosphorus in the system and to compare the characteristics of phosphorus removal in four experimental BNR units. The influent COD/T-P ratio was varied from 22 to 64 by changing COD concentration while maintaining phosphorus concentration constant. In general sidestream BNR units such as Phostrip and P/L units outperformed mainstream BNR units such as A/O and A2/O units in terms of phosphorus removal. While phosphorus release and uptake in A/O and A2/O units became less significant at low influent COD/T-P, the phosphorus release in A2/O unit was further influenced by nitrate in return sludge and thus A2/O unit required even higher influent COD/T-P ratio for luxury uptake of phosphorus. The luxury uptake of phosphorus in Phostrip and P/L units were not affected by influent COD/T-P ratio and the adverse effect of nitrate in return sludge on anaerobic phosphorus release in P/L process was not significant due to the sludge blanket in P-stripper.


2004 ◽  
Vol 49 (5-6) ◽  
pp. 257-264 ◽  
Author(s):  
S.R. Chae ◽  
S.H. Lee ◽  
J.O. Kim ◽  
B.C. Paik ◽  
Y.C. Song ◽  
...  

As the sewerage system is incomplete, sewage in Korea lacks easily biodegradable organics for nutrient removal. In this country, about 11,400 tons of food waste of high organic materials is produced daily. Therefore, the potential of food waste as an external carbon source was examined in a pilot-scale BNR (biological nutrient removal) process for a half year. It was found that as the supply of the external carbon increased, the average removal efficiencies of T-N (total nitrogen) and T-P (total phosphorus) increased from 53% and 55% to 97% and 93%, respectively. VFAs (volatile fatty acids) concentration of the external carbon source strongly affected denitrification efficiency and EBPR (enhanced biological phosphorus removal) activity. Biological phosphorus removal was increased to 93% when T-N removal efficiency increased from 78% to 97%. In this study, several kinds of PHAs (poly-hydroxyalkanoates) in cells were observed. The observed PHAs was composed of 37% 3HB (poly-3- hydroxybutyrate), 47% 3HV (poly-3-hydroxyvalerate), 9% 3HH (poly-3-hydroxyhexanoate), 5% 3HO (poly-3-hydroxyoctanoate), and 2% 3HD (poly-3-hydroxydecanoate).


2014 ◽  
Vol 507 ◽  
pp. 693-701
Author(s):  
Jiu Yi Li ◽  
Nian Peng Wu ◽  
Jin Li ◽  
Ai Min Wang ◽  
Yong Chen ◽  
...  

Biological nutrient removal (BNR) is generally integrated in municipal wastewater treatment plants to alleviate the impact of treated effluent on receiving watersheds. This paper studies the performance of BNR in a membrane bioreactor system consisting of anaerobic, anoxic, micro-aerobic and aerobic compartments treating a synthetic wastewater containing low organic matters. The membrane bioreactor system designed an anti-stream, stepwise return flow scheme to produce ideal conditions for the occurrence of simultaneous nitrification and denitification and denitrifying phosphorus removal processes. The proposed membrane reactor system has established higher biomass concentrations and ideal environments for biological nutrient removal processes, which results in high nutrient removal efficiencies treating low organic wastewaters. Four compartment configurations in the reactor system minimized the impact of oxidized nitrogen species in return flow on phosphorus release in the anaerobic tank and the anti-stream, stepwise return flow scheme encouraged the utilization of nitrate as the electronic acceptor in phosphorus uptake in the micro-aerobic tank. Denitrifying phosphorus removal and simultaneous nitrification and denitrification processes are the main mechanisms responsible for efficient nutrient removal. High phosphorus release activities and high phosphate concentration in the anaerobic tank make it is potentially feasible to recover phosphorus resource from wastewater.


1996 ◽  
Vol 34 (3-4) ◽  
pp. 275-282 ◽  
Author(s):  
G. B. Saayman ◽  
C. F. Schutte ◽  
J. van Leeuwen

The use of chemicals for sludge bulking control has a direct effect on the biological nutrient removal processes in activated sludge systems designed for this purpose. Chlorine has been used on full scale but information on the use of ozone and hydrogen peroxide is limited to pilot scale tests. The objective of this study was to investigate the effects of chlorine, ozone and hydrogen peroxide on nutrient removal processes when used on a continuous basis for bulking control in a full scale biological nutrient removal activated sludge plant. The full scale studies were conducted over a period of 39 months at the Daspoort sewage works of the City Council of Pretoria. The results indicate that at low dosages the oxidants have limited effects on the nutrient removal processes but at higher levels chlorine had a detrimental effect resulting in the phosphate limit of 1 mg P.1−1 being exceeded. It is concluded that chlorine is the most effective of the three oxidants for bulking control, but that it should be used with caution in order not to upset the biological phosphate removal processes. Ozone at low levels had a small but consistent positive effect on bulking control as well as on nutrient removal. The effects of hydrogen peroxide were very small except at high dosages.


1996 ◽  
Vol 34 (1-2) ◽  
pp. 417-423 ◽  
Author(s):  
G. J. Hatziconstantinou ◽  
P. Yannakopoulos ◽  
A. Andreadakis

Primary sludge hydrolysis can enrich primary effluent with the soluble organics which in turn can be a valuable carbon source to subsequent nutrient removal processes. By controlling hydraulic retention time and temperature it is possible to confine the anaerobic digestion of the primary sludge to the acidogenic and acetogenic phase (hydrolysis/fermentation process), and take advantage of the soluble organics produced. This paper presents the results of a research involving bench and pilot scale experiments related to primary sludge hydrolysis. The pilot scale sedimentation tank (4.10 m in diameter, 3.20 m in depth) operated over an expended period of 21 months as a conventional clarifier and following this as a fermentor unit employing sludge recirculation. Parallel to the pilot scale experiments, several batch and continuous flow bench scale experiments were conducted in order to determine the factors controlling the production of soluble organics and the effect of the latter on the denitrification process. The conclusions drawn were that a) a soluble COD production of the order of 5-6% in terms of sludge TCOD can be expected in a batch fermentor operating with HRT≅2days at T≤ 20°C, b) in a continuous flow fermentor, combinations of T>20°C and SRT>2 should be applied in order to achieve a production of the order of 10%, c) significant soluble carbon production can be achieved in primary sedimentation tanks (over 30% in terms of influent SCOD) when relatively increased SRTs (4 to 5 days) in combination with sludge recirculation are employed, under T>22°C, and d) increased denitrification performance of the order of 9 mgNOx/g MLSS.hr, can be achieved with hydrolysate as a carbon source.


1996 ◽  
Vol 34 (1-2) ◽  
pp. 221-228 ◽  
Author(s):  
Gakuji Kurata ◽  
Kazushi Tsumura ◽  
Syoichiro Nakamura ◽  
Michio Kuwahara ◽  
Akio Sato ◽  
...  

In existing wastewater treatment plants that employ biological nitrogen and phosphorus removal processes, a low concentration of organic substrates in the influent wastewater has a destabilizing effect on the phosphorus removal process. Many efforts have been made to combat this problem, including reconstructing the process flow and improving operation and control systems. However, because the mechanism used for biological phosphorus removal is complex, it is difficult to establish effective empirical methods. For this paper, we constructed a simulator for the wastewater treatment process and tried to improve on current procedures, focusing on the planning, execution, and evaluation of methods of retrofitting existing WWTP with equipment for biological nutrient removal. The Shinnanyo WWTP uses the anaerobic/aerobic activated sludge process to remove nitrogen and phosphorus biologically. At this plant, however, the influent wastwwater has an insufficient concentration of organic substrates, thus decreasing the efficiency of the biological phosphorus removal. An analysis of organic consumption in the reaction tank on the simulation suggested that injecting primary sludge into the reaction tank would increase the efficiency of phosphorus removal process. Full scale experiments conducted at the plant verified the efficiency of this method. In addition, by shortening the A-SRT, ensuring that nitrification is not negatively affected, the efficiency of the nitrogen and phosphorus removal was significantly improved.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 211-216
Author(s):  
Niels Skov Olesen

In some areas of Denmark nutrient removal is required even for very small wastewater plants, that is down to 500 pe (pe = person equivalents). The goal for the removal is 80% removal of nitrogen and 90% removal of phosphorus, or in terms of concentrations: 8 mg nitrogen/l and 1.2 mg phosphorus/l. The inlet concentrations are typically 40 mg N/l and 10 mg P/l. The paper presents the results from two such plants with a capacity of 800 pe. Phosphorus removal is made by simultaneous precipitation with ferrous sulphate. Nitrogen removal is carried out using the recirculation method. Both plants were originally rotor aerated oxidation ditches. They have been extended with a denitrification reactor and a recirculation pumping station. At present both plants have been in activity for about 3 years and with satisfactory results. Average concentrations of nitrogen (summer) and phosphorus is 7 mg/l and 0.9 mg/l respectively. Nitrogen removal seems to be a practical solution on these small plants. It is,though, sensitive to temperature and highly oxidized rain water. Phosphorus removal seems to be an easily run and relatively non-sensitive technique at least when using simultaneous precipitation.


1998 ◽  
Vol 38 (1) ◽  
pp. 327-334 ◽  
Author(s):  
P. Pavan ◽  
P. Battistoni ◽  
P. Traverso ◽  
A. Musacco ◽  
F. Cecchi

The paper presents results coming from experiments on pilot scale plants about the possibility to integrate the organic waste and wastewater treatment cycles, using the light organic fraction produced via anaerobic fermentation of OFMSW as RBCOD source for BNR processes. The effluent from the anaerobic fermentation process, with an average content of 20 g/l of VFA+ lactic acid was added to wastewater to be treated in order to increase RBCOD content of about 60-70 mg/l. The results obtained in the BNR process through the addition of the effluent from the fermentation unit are presented. Significant increase of denitrification rate was obtained: 0.06 KgN-NO3/KgVSS d were denitrified in the best operative conditions studied. -Vmax shows values close to those typical of the pure methanol addition (about 0.3 KgN-NO3/KgVSS d). A considerable P release (35%) was observed in the anaerobic step of the BNR process, even if not yet a completely developed P removal process.


Sign in / Sign up

Export Citation Format

Share Document