Characterization, management and treatment of wastewater from white wine production

2007 ◽  
Vol 56 (2) ◽  
pp. 121-128 ◽  
Author(s):  
B. Fernández ◽  
I. Seijo ◽  
G. Ruiz-Filippi ◽  
E. Roca ◽  
L. Tarenzi ◽  
...  

During a 16 months period, the characteristics of the wastewaters generated in a Rias Baixas winery (Spain) producing white wine were determined: The characterization study showed that white wine wastewater had an average CODt and TSS values of 7.3 and 5.2 kg/m3, respectively being the ratio wastewater/wine produced of about 1.6–2.0 L/L and the ratio between load pollution and produced wine of 9.7 kgCODt/m3WINE. A strategy for the management of wastes and wastewaters allowed for an important reduction of a 55% of wastewater generation to be achieved. In order to select a suitable technology for the treatment of wastewaters two configurations were tested at pilot scale: i) An Anaerobic Filter (AF) of 430 L followed by an activated sludge unit of 510 L and: ii) one activated sludge unit of 510 L. The results showed that the anaerobic/aerobic configuration was more flexible as it adapted quickly to the different loads and flows produced during the different phases through the year. Besides it allowed higher COD removals (98.5–99.2%) to be achieved and proved to permit a quicker re-start up after starvation periods.

2007 ◽  
Vol 56 (2) ◽  
pp. 63-69 ◽  
Author(s):  
P. Artiga ◽  
M. Carballa ◽  
J.M. Garrido ◽  
R. Méndez

Wine production is seasonal, and thus the wastewater flow and its chemical oxygen demand (COD) concentrations greatly vary during the vintage and non-vintage periods, as well as being dependant on the winemaking technologies used, e.g. red, white or special wines production. Due to this seasonal high variability in terms of organic matter load, the use of membrane biological reactors (MBR) could be suitable for the treatment of such wastewaters. MBR offers several benefits, such as rapid start up, good effluent quality, low footprint area, absence of voluminous secondary settler and its operation is not affected by the settling properties of the sludge. A pilot scale hollow fibre MBR system of 220 L was fed by adequately diluting white wine with tap water, simulating wastewaters generated in wineries. The COD in the influent ranged between 1,000 and 4,000 mg/L. In less than 10 days after the start up, the system showed a good COD removal efficiency. The COD elimination percentage was always higher than 97% regardless of the organic loading rate (OLR) applied (0.5–2.2 kg COD/m3 d), with COD concentrations in the effluent ranging between 20 and 100 mg/L. Although the biomass concentration in the reactor increased from 0.5 to 8.6 g VSS/L, the suspended solids concentration in the effluent was negligible. Apparent biomass yield was estimated in 0.14 g VSS/g COD.


2015 ◽  
Vol 72 (10) ◽  
pp. 1840-1850 ◽  
Author(s):  
Nitin Kumar Singh ◽  
Absar Ahmad Kazmi ◽  
Markus Starkl

The present study summarizes the start-up performance and lessons learned during the start-up and optimization of a pilot-scale plant employing integrated fixed film activated sludge (IFAS) process treating actual municipal wastewater. A comprehensive start-up was tailored and implemented to cater for all the challenges and problems associated with start-up. After attaining desired suspended biomass (2,000–3,000 mg/L) and sludge age (∼7 days), the average biological oxygen demand (BOD) and chemical oxygen demand (COD) removals were observed as 77.3 and 70.9%, respectively, at optimized conditions, i.e. hydraulic retention time (HRT), 6.9 h; return sludge rate, 160%. The influent concentrations of COD, BOD, total suspended solids, NH3-N, total nitrogen and total phosphorus were found to be in the range of 157–476 mg/L, 115–283 mg/L, 152–428 mg/L, 23.2–49.3 mg/L, 30.1–52 mg/L and 3.6–7.8 mg/L, respectively, and the minimum effluent concentrations were achieved as ∼49 mg/L, 23 mg/L, 35 mg/L, 2.2 mg/L, 3.4 mg/L and 2.8 mg/L, respectively, at optimum state. The present system was found effective in the removal of pathogenic bacteria (Escherichia coli, 79%; Salmonella spp., 97.5%; Shigella spp., 92.9%) as well as coliforms (total coliforms, 97.65%; faecal coliforms, 80.35%) without any disinfection unit. Moreover it was observed that the time required for the stabilization of the plant was approximately 3 weeks if other parameters (sludge age, HRT and dissolved oxygen) are set to optimized values.


1996 ◽  
Vol 34 (11) ◽  
pp. 25-32 ◽  
Author(s):  
P. Chudoba ◽  
R. Pujol

Most of municipal activated sludge plants located in wine production regions receive winery wastewaters during the grape harvest period which lasts usually only a few weeks. A drastic increase in organic pollution (COD, BOD) during this period generates a temporary overloading, resulting very often in biological problems such as decreased sludge settleability, sludge floc disintegration, increased SS concentration in treated effluent and in the worst case a complete plant failure. In order to work satisfactorily even during those temporary overloading periods, the plant has to be oversized. This strategy is rather costly, because such a plant has to run below its nominal capacity during a major part of the year. An original solution has been proposed and successfully tested at a municipal wastewater treatment plant in Eguisheim, France. The proposed technique is based on the addition of a mineral material with a low particle size, whose presence positively influences the physical behaviour of the sludge and will allow the nominal capacity of the plant to be surpassed without any important modification. The modification of the sludge structure around the added powdered material improved significantly the sludge settleability (DSVI< 160 ml/g) and enabled the plant to treat organic pollution several times higher than the nominal level.


1997 ◽  
Vol 36 (6-7) ◽  
pp. 125-132 ◽  
Author(s):  
Toshiya Komatsu ◽  
Jun Shinmyo ◽  
Kiyoshi Momonoi

Tetrachloroethylene (PCE) is one of the most common groundwater contaminants in Japan. PCE can be completely dechlorinated to ethylene (ETY) and ethane (ETA) by anaerobic microorganisms in the presence of a suitable electron donor. This study was conducted to examine the feasibility of using an anaerobic filter for the degradation of PCE in a bioremediation process. Laboratory-scale anaerobic filters were operated at 25°C using ethanol as the electron donor. Rapid start-up of the reactors was achieved by using anaerobic completely PCE-dechlorinating enrichment cultures as the inoculum. During the continuous operating periods, low concentrations (2.8 mg/L) of PCE were almost completely dechlorinated to ETY and ETA at hydraulic retention times of 49-15 hours with 100 mgCOD/L of ethanol. PCE concentrations as high as 80 mg/L was dechlorinated to ETY with a relatively low supply (200 mgCOD/L) of ethanol. Results of this study suggest that the anaerobic filter system is a feasible bioremediation process for the cleanup of groundwater which is contaminated by chlorinated ethylenes.


2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


2016 ◽  
Vol 285 ◽  
pp. 83-91 ◽  
Author(s):  
Fernando Almenglo ◽  
Martín Ramírez ◽  
José Manuel Gómez ◽  
Domingo Cantero

2010 ◽  
Vol 113-116 ◽  
pp. 2201-2207 ◽  
Author(s):  
Jun Yin ◽  
Lei Wu ◽  
Ke Zhao ◽  
Yu Juan Yu

In this article, analysis the start-up of A2/O humic activated sludge system phosphorus removal efficiency and the characteristics of anaerobic phosphorus release, aerobic phosphorus uptake, sludge activity and their change in the Series Technologies process. The results show that A2/O humic activated sludge system phosphorus removal rate stabilized at 90.7% ~ 97.6%. Sludge activity except for anoxic zone 2 increased, along the process showed a gradual decrease trend.


1994 ◽  
Vol 30 (3) ◽  
pp. 173-181 ◽  
Author(s):  
L. Knudsen ◽  
J. A. Pedersen ◽  
J. Munck

The work presented in this paper concerns the application of a two-stage aerobic activated sludge process for treatment of effluents from paper mills in Denmark. The paper describes both pilot-scale test results and fullscale experience with the process. The treatment process is characterised by a bigh-load first stage (2-4 kg COD/kg MLSSxd) followed by a low-load second stage to secure full nitrification and denitrification of remaining nitrogen compounds. The results of continuous pilot-scale tests show that it is possible to obtain a reduction of more than 85% of the incoming COD,01 and a 99% reduction of the incoming BOD5, resulting in an effluent quality of 230 mg CODsol/l and less than 10 mg BOD5/l. As indicated, practically all the biodegradable organic substances are removed by the process. The remaining fraction of soluble organics measured as COD is considered to be non-biodegradable by conventional biological treatment systems. The results produced in the pilot-scale tests are confirmed by the effluent qualities obtained in a full-scale treatment plant at another paper mill, involving an identical process concept. During the pilot-scale tests, special attention bas been paid to the removal of organic compounds, organic nitrogen as well as nutrients and nitrification. In addition, the sludge characteristics and the oxygen requirements have been considered.


Sign in / Sign up

Export Citation Format

Share Document