Treatment of winery wastewaters in a membrane submerged bioreactor

2007 ◽  
Vol 56 (2) ◽  
pp. 63-69 ◽  
Author(s):  
P. Artiga ◽  
M. Carballa ◽  
J.M. Garrido ◽  
R. Méndez

Wine production is seasonal, and thus the wastewater flow and its chemical oxygen demand (COD) concentrations greatly vary during the vintage and non-vintage periods, as well as being dependant on the winemaking technologies used, e.g. red, white or special wines production. Due to this seasonal high variability in terms of organic matter load, the use of membrane biological reactors (MBR) could be suitable for the treatment of such wastewaters. MBR offers several benefits, such as rapid start up, good effluent quality, low footprint area, absence of voluminous secondary settler and its operation is not affected by the settling properties of the sludge. A pilot scale hollow fibre MBR system of 220 L was fed by adequately diluting white wine with tap water, simulating wastewaters generated in wineries. The COD in the influent ranged between 1,000 and 4,000 mg/L. In less than 10 days after the start up, the system showed a good COD removal efficiency. The COD elimination percentage was always higher than 97% regardless of the organic loading rate (OLR) applied (0.5–2.2 kg COD/m3 d), with COD concentrations in the effluent ranging between 20 and 100 mg/L. Although the biomass concentration in the reactor increased from 0.5 to 8.6 g VSS/L, the suspended solids concentration in the effluent was negligible. Apparent biomass yield was estimated in 0.14 g VSS/g COD.

2007 ◽  
Vol 56 (2) ◽  
pp. 121-128 ◽  
Author(s):  
B. Fernández ◽  
I. Seijo ◽  
G. Ruiz-Filippi ◽  
E. Roca ◽  
L. Tarenzi ◽  
...  

During a 16 months period, the characteristics of the wastewaters generated in a Rias Baixas winery (Spain) producing white wine were determined: The characterization study showed that white wine wastewater had an average CODt and TSS values of 7.3 and 5.2 kg/m3, respectively being the ratio wastewater/wine produced of about 1.6–2.0 L/L and the ratio between load pollution and produced wine of 9.7 kgCODt/m3WINE. A strategy for the management of wastes and wastewaters allowed for an important reduction of a 55% of wastewater generation to be achieved. In order to select a suitable technology for the treatment of wastewaters two configurations were tested at pilot scale: i) An Anaerobic Filter (AF) of 430 L followed by an activated sludge unit of 510 L and: ii) one activated sludge unit of 510 L. The results showed that the anaerobic/aerobic configuration was more flexible as it adapted quickly to the different loads and flows produced during the different phases through the year. Besides it allowed higher COD removals (98.5–99.2%) to be achieved and proved to permit a quicker re-start up after starvation periods.


2019 ◽  
Vol 9 (10) ◽  
pp. 1974 ◽  
Author(s):  
Zhixin Qi ◽  
Guoli Xiang ◽  
Deqi Xiong

A pilot-scale six-compartment hybrid anaerobic baffled reactor (HABR) with effective volume of 18 m3 was used to treat dyeing wastewater. The HABR system was able to treat the wastewater efficiently after FeSO4 pretreatment, as indicated by removal efficiencies of 33.7% for chemical oxygen demand (COD), 39.9% for suspended solid (SS), and 22.5% for sulfate (SO42−) during steadily operational period. Gas chromatography–mass spectrometry (GC-MS) showed that the concentrations of alkanes, amides, organic acids, ketones, phenols, and esters were much lower in the effluent than those in the influent; many high-molecular-weight compounds such as cyclanes, quinolines, and phenols were successfully transformed to low-molecular-weight ones. As illustrated from the results of generalized grey relational analysis (GGRA), COD removal efficiency was more closely associated with flow rate, organic loading rate (OLR), water temperature, and influent SS among the whole selected possible factors. Based on the overall treating effectiveness and the GGRA study, the optimized operation strategy of the dyeing wastewater treatment by HABR was obtained as the hydraulic retention time (HRT) of 12 h for steady-state operation with an up-flow velocity of 1.7 m/h as well as OLR of 1.5–2.0 kg COD/(m3·d).


2007 ◽  
Vol 55 (8-9) ◽  
pp. 455-464 ◽  
Author(s):  
G. Di Bella ◽  
F. Durante ◽  
M. Torregrossa ◽  
G. Viviani ◽  
P. Mercurio ◽  
...  

The present study has aimed to quantify the role of pore blocking and cake layer in a laboratory scale hollow fibre membrane module in submerged configuration. The membrane reactor (MBR) was fed with raw wastewater, only screened with a 2-mm sieve, collected from the Palermo WWTP. The MBR was characterised by an operating volume of 190 L and equipped with an aeration system located on the bottom of the reactor. The MBR operated for 65 days. The permeate was extracted by imposing a constant flux through the membrane (21 Lh−1m−2). The results confirm the importance of pore blocking control during start-up. In particular, it provides a rapid irreversible fouling that takes place at the beginning of the filtration process, before the deposition mechanism. Therefore, low suspended solids concentration in the initial phase causes a fast irreversible fouling. This circumstance creates the need for more frequent chemical cleaning after start-up without inoculum. Finally, the results underline that the cake has a mainly reversible feature.


2015 ◽  
Vol 72 (10) ◽  
pp. 1840-1850 ◽  
Author(s):  
Nitin Kumar Singh ◽  
Absar Ahmad Kazmi ◽  
Markus Starkl

The present study summarizes the start-up performance and lessons learned during the start-up and optimization of a pilot-scale plant employing integrated fixed film activated sludge (IFAS) process treating actual municipal wastewater. A comprehensive start-up was tailored and implemented to cater for all the challenges and problems associated with start-up. After attaining desired suspended biomass (2,000–3,000 mg/L) and sludge age (∼7 days), the average biological oxygen demand (BOD) and chemical oxygen demand (COD) removals were observed as 77.3 and 70.9%, respectively, at optimized conditions, i.e. hydraulic retention time (HRT), 6.9 h; return sludge rate, 160%. The influent concentrations of COD, BOD, total suspended solids, NH3-N, total nitrogen and total phosphorus were found to be in the range of 157–476 mg/L, 115–283 mg/L, 152–428 mg/L, 23.2–49.3 mg/L, 30.1–52 mg/L and 3.6–7.8 mg/L, respectively, and the minimum effluent concentrations were achieved as ∼49 mg/L, 23 mg/L, 35 mg/L, 2.2 mg/L, 3.4 mg/L and 2.8 mg/L, respectively, at optimum state. The present system was found effective in the removal of pathogenic bacteria (Escherichia coli, 79%; Salmonella spp., 97.5%; Shigella spp., 92.9%) as well as coliforms (total coliforms, 97.65%; faecal coliforms, 80.35%) without any disinfection unit. Moreover it was observed that the time required for the stabilization of the plant was approximately 3 weeks if other parameters (sludge age, HRT and dissolved oxygen) are set to optimized values.


2017 ◽  
Vol 18 (1) ◽  
pp. 49-59 ◽  
Author(s):  
S. Saran ◽  
P. Arunkumar ◽  
S. P. Devipriya

Abstract The potable use of harvested rainwater is limited, mainly due to contamination with various pathogenic microorganisms. Disinfection of microorganisms by solar photocatalysis is emerging as a promising technique for drinking water treatment. The present study deals with the preparation of Ag-doped TiO2 by the sol gel method, and its immobilization over the inner surface of the Pyrex glass pipes used in fabrication of pilot-scale reactors. The solar photocatalytic efficiency of the reactors was tested for the disinfection of microorganisms in tap water and roof harvested rainwater. The photocatalytic experiments under solar irradiation illustrate that doping with silver ions significantly increases the inactivation rate of all microorganisms compared with pure TiO2 and direct photolysis. The inactivation efficiency against various microorganisms was found in the following decreasing order: E. coli>MS-2 phage>Aspergillus spores. The roof harvested rainwater was completely disinfected in addition to chemical oxygen demand (COD) removal, within 120 minutes of solar irradiation. The experimental cycle was repeated several times to study the stability of the reactor. The pilot-scale solar photocatalytic fixed bed tubular reactors were found to be very effective for the disinfection of rainwater for potable use.


2016 ◽  
Vol 14 (6) ◽  
pp. 1241-1254 ◽  
Author(s):  
Ousman R. Dibaba ◽  
Sandip K. Lahiri ◽  
Stephan T’Jonck ◽  
Abhishek Dutta

Abstract A pilot scale Upflow Anaerobic Contactor (UAC), based on upflow sludge blanket principle, was designed to treat vinasse waste obtained from beet molasses fermentation. An assessment of the anaerobic digestion of vinasse was carried out for the production of biogas as a source of energy. Average Organic loading rate (OLR) was around 7.5 gCOD/m3/day in steady state, increasing upto 8.1 gCOD/m3/day. The anaerobic digestion was conducted at mesophilic (30–37 °C) temperature and a stable operating condition was achieved after 81 days with average production of 65 % methane which corresponded to a maximum biogas production of 85 l/day. The optimal performance of UAC was obtained at 87 % COD removal, which corresponded to a hydraulic retention time of 16.67 days. The biogas production increased gradually with OLR, corresponding to a maximum 6.54 gCOD/m3/day (7.4 % increase from initial target). A coupled Artificial Neural Network-Differential Evolution (ANN-DE) methodology was formulated to predict chemical oxygen demand (COD), total suspended solids (TSS) and volatile fatty acids (VFA) of the effluent along with the biogas production. The method incorporated a DE approach for the efficient tuning of ANN meta-parameters such as number of nodes in hidden layer, input and output activation function and learning rate. The model prediction indicated that it can learn the nonlinear complex relationship between the parameters and able to predict the output of the contactor with reasonable accuracy. The utilization of the coupled ANN-DE model provided significant improvement to the study and helps to study the parametric effect of influential parameters on the reactor output.


Author(s):  
Md. Nurul Islam Siddique ◽  
Zularisham A. Wahid

The effect of gradual increase in organic loading rate (0LR) and temperature on biomethanation from petrochemical wastewater treatment was investigated using CSTR. The digester performance measured at hydraulic retention time (HRT) of4 to 2d, and start up procedure of the reactor was monitoredfor 60 days via chemical oxygen demand (COD) removal, biogas and methane production. By enhancing the temperature from 30 to 55 “C Thermophilic condition was attained, and pH was adjusted at 7 i 0.5. Supreme COD removal competence was 98i0.5% (r = 0.84) at an 0LR of 7.5 g-COD/Ld and 4d HRT. Biogas and methane yield were logged to an extreme of 0.80 L/g-CODremoved d (r = 0.81), 0.60 L/g-CODremoved d (r = 0.83), and mean methane content of biogas was 65.49%. The full acclimatization was established at 55 C with high COD removal efficiency and biogas production. An 0LR of 7.5 g-COD/L d and HRT of 4 days were apposite forpetrochemical wastewater treatment.


1999 ◽  
Vol 40 (8) ◽  
pp. 237-244 ◽  
Author(s):  
A. Puñal ◽  
A. Lorenzo ◽  
E. Roca ◽  
C. Hernández ◽  
J. M. Lema

The operation of an industrial pilot scale treating wastewater from a fibreboard-processing factory was monitored by an advanced system. The plant, an anaerobic hybrid UASB-UAF bioreactor (Upflow Anaerobic Sludge Blanket-Upflow Anaerobic Filter), was equipped with the following measurement devices: biogas flow-meter, feed and recycling flow-meters, thermometer Pt-100, biogas analyser (CH4 and CO), Hydrogen analyser and pH-meter. Other parameters such as alkalinity, Chemical Oxygen Demand (COD) and Volatile Fatty Acids (VFA) were determined off-line. All the on-line sensor measurements were monitored, through a PLC (Programmable Logic Controller), which indicated about the plant failures, including the measuring devices (giving messages or alarms to the operator) and provided the set points for the PLC. The pilot plant was started-up at an initial Organic Loading Rate (OLR) of 2 kg COD/m3.d (Hydraulic Retention Time (HRT) 5 days and 10 kg COD/m3), this value increasing up to 10 kg COD/m3.d by decreasing HRT to 1 day. The behaviour of the bioreactor during start-up and steady state operation was studied. After that, an experiment was performed to analyse the response of the bioreactor to an organic overload. From the results, different variables were evaluated as useful control parameters. Monitoring of CO concentration did not permit the prediction of destabilisation of the bioreactor. However, H2 concentration is quite a sensitive variable, which must be analysed together with other parameters such as methane composition or gas flow-rate. Besides, alkalinity is easy to measure and provides immediate information about the state of the plant, as was shown through the off-line measurements.


2016 ◽  
Vol 73 (8) ◽  
pp. 1777-1784 ◽  
Author(s):  
D. Tanikawa ◽  
K. Syutsubo ◽  
M. Hatamoto ◽  
M. Fukuda ◽  
M. Takahashi ◽  
...  

A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kgCOD/(m3.d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB–DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB–DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.


Sign in / Sign up

Export Citation Format

Share Document