Establishment of sustainable water supply system in small islands through rainwater harvesting (RWH): case study of Guja-do

2010 ◽  
Vol 62 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Mooyoung Han ◽  
Jaehong Ki

Many islands in Korea have problems related to water source security and supply. In particular, the water supply condition is worse in small islands which are remote from the mainland. A couple of alternatives are developed and suggested to supply water to islands including water hauling, groundwater extraction, and desalination. However, these alternatives require much energy, cost, and concern in installation and operation. Rainwater harvesting is a sustainable option that supplies water with low energy and cost. However, lack of practical or comprehensive studies on rainwater harvesting systems in these regions hinders the promotion of the system. Therefore, this research examines defects of current RWH systems on an existing island, Guja-do, and provides technical suggestions in quantitative and qualitative aspects. A simple system design modification and expansion of system capacity using empty space such as a wharf structure can satisfy both the qualitative and the quantitative water demand of the island. Since rainwater harvesting is estimated to be a feasible water supply option under the Korean climate, which is an unfavorable condition for rainwater harvesting, implies a high potential applicability of rainwater harvesting technology to other regions over the world suffering from water shortage.

2021 ◽  
Vol 16 (1) ◽  
pp. 18-25
Author(s):  
Fauziah Ismahyanti ◽  
Rosmawita Saleh ◽  
Arris Maulana

This research is done to plan rainwater harvesting so that it can be used as an alternative water source on the campus B UNJ so it is expected to reduce groundwater use that can cause a puddle. The method used in the PAH development plan is a water balance method. This method compares the level of demand with water volume that can be accommodated or the availability of water (supply). Based on the results of the analysis, it was found that the potential for rainwater in the FIO office building A was 1773.95 m3 , FMIPA building B was 1904.62 m3 , the FIO lecture building C was 1613.21 m3 and the Ulul Albab mosque was 512.16 m3 . Potential rainwater obtained cistern PAH capacity of 200 m3 by saving water needs by 30% in building A FIO, building B FMIPA, and building C FIO. The capacity of the PAH cistern is 80 m3 by saving the water needs of the Ulul Albab mosque by 13.3%. Placement of the PAH cistern under the ground with a ground water system. Ecodrainage application by utilizing the PAH system can reduce drainage load by 0.158 m3 /second or 13.9% from rainwater runoff.


2021 ◽  
Vol 3 ◽  
Author(s):  
Pennan Chinnasamy ◽  
Aman Srivastava

Traditional tanks in arid regions of India have been working to address water demands of the public for more than 2000 years. However, recent decade is witnessing growing domestic and agricultural water demand coupled with rising encroachment and ignorance toward tanks; consequently, intensifying water shortage issues. While climate change is impacting at alarming rates, local agencies have forgotten these tanks that have aided in sustainable water supply solutions for decades apart from municipal water supply. This research, for the first time, estimates water supply-demand for an arid region in South India (Madurai) and lists out the benefits if tanks were managed and desilted. Exploratory investigations for documenting seasonal domestic and agricultural unmet water demand were conducted followed by their validation through ground-truthing across the study period 2002–2019. Results indicated high unmet domestic water demand, estimating ~73% [maximum 365 thousand cubic meters (TCM)] for summer (March to May) and ~33% (maximum 149 TCM) for winter (January and February), and high unmet agricultural water demand estimating ~90% (maximum 5,424 TCM) during North-East monsoon (October to December), and ~95% (maximum 5,161 TCM) during South-West monsoon (June to September). Erratic rainfall pattern was identified as a major cause for higher fluctuations in water availability inside tanks ranging 0–50%, while lack of ownership resulted in increased siltation load ranging 30–70% of the tank's volume. The study found that the major portion of the unmet water demand can be accounted for through rehabilitation of the tanks, as under the rehabilitated tank irrigation scenario the tank storage could attain 200–400% more water than the estimated agricultural water demand. It was concluded that if the cascade tanks were managed appropriately, they could have positive impacts by reducing floods and providing water for drought seasons.


Author(s):  
Danang Aria Pranedya Baskoro ◽  
Atep Hermawan ◽  
Tri Permadi

Good management of water resources is a requirement for an area that has a high population development. Sentul City, which is an independent city in Bogor Regency which has a high population, is in an area that lacks water, because of this Sentul City requires infrastructure and policies that are able to ensure the availability of water for its residents. One of the paradigms of water management in urban areas is a water sensitive city. One of the steps in this paradigm is wastewater management and rainwater harvesting. The dynamic system modelling method is used to predict the impact of implementing several policies that will be taken to manage water resources. The objectives of this study are to build dynamic models to predict water supply and demand and to analyze policies for wastewater management and rainwater harvesting. Sentul City water demand is estimated will reach 122 105 000 m3 and a water crisis will occur in 2027. The wastewater recycle policy can inhibit the water crisis until 2030 and the negative water balance will last until 2040. Combining wastewater recycle and rainwater harvesting can increase water availability by 240% and prevent a water crisis.


2015 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
Anand Verdhen

The population and industrial growths are demanding for sustainable and safe drinking water and waste disposal in rural and urban belts. Deficiency and lack of fresh water supply and sewage disposal/treatment affects the health and hygiene of household, community dwellers and local/regional environment. The paper highlights the problems around Farukh Nagar of Gurgaon District in Haryana and suggests for scientific and technological study to address the issue. Preliminary field visit and study show the gravity of problem and possible reasons. However, detailed study is required adopting scientific and technological viable strategy including methodology, questionnaire based interaction with beneficiaries and agencies to collect stratified socio-economic and technical primary and secondary details/records, people perceptions and experiences, Ground water details (level, yield, point source and quality fluctuations), Surface water source, rainfall, water supply system/parameters, population and growth, waste water and sludge production, treatment and disposal system, recharge and outfall zone in the study/nearby areas, etc. Further, analysis of data employing hydrological/hydraulic software, testing/verification of quality parameters with Indian and international standards, physical models, workshops among beneficiaries and user agencies addressing the points of innovation to implement viable and sustainable water supply and sewage disposal plans are needed.


2010 ◽  
Vol 62 (1) ◽  
pp. 140-147 ◽  
Author(s):  
M. M. Islam ◽  
F. N.-F. Chou ◽  
C.-H. Liaw

The water shortage of today's world is one of the most challenging problems and the world is looking for the best solution to reduce it. Some human made causes and also natural causes are liable for the shortage of the existing water supply system. In Taiwan, especially during typhoon, the turbidity of raw water increases beyond the treatment level and the plant cannot supply required amount of water. To make the system effective, a couple of days are needed and the shortage occurs. The purpose of this study is to solve this emergency shortage problem. A dual-mode Rainwater Harvesting System (RWHS) was designed for this study as a supplement to the existing water supply system to support some selected non-potable components such as toilet and urinal flushing of an elementary school. An optimal design algorithm was developed using YAS (yield after spillage) and YBS (yield before spillage) release rules. The study result proved that an optimum volume of tank can solve the emergency water shortage properly. The system was found to be more reliable in Taipei area than that of Tainan area. The study also discovered that a government subsidy would be needed to promote the system in Taiwan.


2014 ◽  
Vol 15 (3) ◽  
pp. 490-498 ◽  
Author(s):  
Wen Liu ◽  
Weiping Chen ◽  
Chi Peng ◽  
Laosheng Wu ◽  
Yuguo Qian

Rainwater is an underutilized water resource that has become more important in recent years; due to severe water logging and water shortage in cities. The evaluation of rainwater harvesting potential is of fundamental importance in planning rainwater harvesting systems and management policies. In this study, we used minute-interval rainfall data and the water mass balance method coupling urban hydrological processes to assess the annual rainwater availability potential (RAP) of different underlying surfaces in the urban areas of Beijing (inside the 5th Ring Road). The estimated total RAP was 154.49 million m3 in 2013. About 53% of rainwater could be effectively harvested for use, among which the rooftops had the highest harvesting ratio of 70%, and contributed about half of the total RAP. Indirect use of rainwater can be achieved through infiltration facilities, of which concave green land construction and porous brick pavement can increase the amount of rainfall that infiltrates into the soil by 18.89% and 55.69%, respectively. Rainwater harvesting and utilization could serve as a significant water source for the urban areas in Beijing.


2011 ◽  
Vol 90-93 ◽  
pp. 1359-1364
Author(s):  
Ju Ping Zhang ◽  
Wei Jiang Zhang ◽  
De Quan Wang

With the expansion of Ningdong Energy and Chemical Industry Base at Lingwu, Ningxia, water shortage is becoming increasingly serious and then has become one of the main factors in restricting the development of society and economy in the region. In the paper, through a systematic analysis of the re-use ways of the sewage as well as the water-saving potential for agricultural purposes, it is suggested that water right trading is the solution when part of the surplus can be used for industrial purposes in the Base, thereby leading to a more reliable way of sustainable water supply and a sustainable and steady economic growth in the region.


2018 ◽  
Vol 245 ◽  
pp. 06012 ◽  
Author(s):  
Nidal Mahmoud ◽  
William Hogland ◽  
Michael Sokolov ◽  
Vasily Rud ◽  
Nikita Myazin

Rainwater harvesting in Palestine is a principal water resource that had been adopted since ancient times. However, the system had not been subjected to a thorough assessment. This paper aims at assessing the feasibility of rainwater harvesting for domestic water supply in Palestinian rural areas with special emphasis on socio-cultural and financial aspects as well as harvested water quality. Different methods were used to collect necessary data from a case study village, including literature review, observations, questionnaires and water quality measurement of freshly fallen and harvested rainwater samples. Moreover, domestic water demand and water supply from such a system were compared, and economic feasibility of applying this system was checked. The results revealed that harvested rainwater is a viable resource that can contribute considerably to minimizing water shortage.


Sign in / Sign up

Export Citation Format

Share Document