The removal of the trivalent chromium from the leather tannery wastewater: the optimisation of the electro-coagulation process parameters

2011 ◽  
Vol 63 (3) ◽  
pp. 385-394 ◽  
Author(s):  
E. GilPavas ◽  
I. Dobrosz-Gómez ◽  
M. Á. Gómez-García

The capacity of the electro-coagulation (EC) process for the treatment of the wastewater containing Cr3+, resulting from a leather tannery industry placed in Medellin (Colombia), was evaluated. In order to assess the effect of some parameters, such as: the electrode type (Al and/or Fe), the distance between electrodes, the current density, the stirring velocity, and the initial Cr3+ concentration on its efficiency of removal (%RCr+3), a multifactorial experimental design was used. The %RCr3+ was defined as the response variable for the statistical analysis. In order to optimise the operational values for the chosen parameters, the response surface method (RSM) was applied. Additionally, the Biological Oxygen Demand (BOD5), the Chemical Oxygen Demand (COD), and the Total Organic Carbon (TOC) were monitored during the EC process. The electrodes made of aluminium appeared to be the most effective in the chromium removal from the wastewater under study. At pH equal to 4.52 and at 28°C, the optimal conditions of Cr3+ removal using the EC process were found, as follows: the initial Cr3+ concentration=3,596 mg/L, the electrode gap=0.5 cm, the stirring velocity=382.3 rpm, and the current density=57.87 mA/cm2. At those conditions, it was possible to reach 99.76% of Cr3+removal, and 64% and 61% of mineralisation (TOC) and COD removal, respectively. A kinetic analysis was performed in order to verify the response capacity of the EC process at optimised parameter values.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kajal Gautam ◽  
Rishi K. Verma ◽  
Suantak Kamsonlian ◽  
Sushil Kumar

AbstractThe present study is aimed to model and optimize the electrocoagulation (EC) process with five important parameters for the decolorization of Reactive Black B (RBB) from simulated wastewater. A multivariate approach, response surface methodology (RSM) together with central composite design (CCD) is used to optimize process parameters such as pH (5–9), electrode gap (0.5–2.5 cm), current density (2.08–10.41 mA/cm2), process time (10–30 min), and initial dye concentration (100–500 mg/l). The predicted percentage decolorization of dye is obtained as 97.21% at optimized conditions: pH (6.8), gapping (1.3 cm), current density (8.32 mA/cm2), time (23 min), and initial dye concentration (200 mg/L), which is very close to experimental percent decolorization (98.41%). The statistical analysis of variance (ANOVA) is performed to evaluate the quadratic model (RSM), and shows good fit of experimental data with coefficient of determination R2 >0.93. An Artificial Neural Network (ANN) is also used to predict the percentage decolorization and gives overall 94.96% which shows performance accuracy between the predicted and actual value of decolorization. The additional considerations of operating cost and current efficiency are also taken care to show the efficacy of EC process with mathematical tool. The sludge characteristics are determined by FE-SEM/EDX.


2018 ◽  
Vol 78 (6) ◽  
pp. 1260-1267 ◽  
Author(s):  
Mohammad Malakootian ◽  
Mohammad Reza Heidari

Abstract Phenol and its derivatives are available in various industries such as refineries, coking plants, steel mills, drugs, pesticides, paints, plastics, explosives and herbicides industries. This substance is carcinogenic and highly toxic to humans. The purpose of the study was to investigate the removal of phenol from wastewater of the steel industry using the electrocoagulation–photo-Fenton (EC-PF) process. Phenol and chemical oxygen demand (COD) removal efficiency were investigated using the parameters pH, Fe2+/H2O2, reaction time and current density. The highest removal efficiency rates of phenol and COD were 100 and 98%, respectively, for real wastewater under optimal conditions of pH = 4, current density = 1.5 mA/cm2, Fe2+/H2O2 = 1.5 and reaction time of 25 min. Combination of the two effective methods for the removal of phenol and COD, photocatalytic electrocoagulation photo-Fenton process is a suitable alternative for the removal of organic pollutants in industry wastewater because of the low consumption of chemicals, absence of sludge and other side products, and its high efficiency.


2014 ◽  
Vol 68 (6) ◽  
Author(s):  
Dao-Bin Zhang ◽  
Xiao-Gang Wu ◽  
Yi-Si Wang ◽  
Hui Zhang

AbstractA study was conducted on the treatment of landfill leachate by combining the sequencing batch biofilm reactor (SBBR) method with the electro-Fenton method. The reduction of chemical oxygen demand (COD), biological oxygen demand (BOD5), and ammonia nitrogen (NH4+-N) from the leachate by the SBBR method was investigated. For the electro-Fenton experiment, the changes in COD and total organic carbon (TOC) with the increase in H2O2 dosage and electrolysis time under optimal conditions were also analysed. The results showed that the average efficiencies of reduction of COD, BOD5, and NH4+ -N achieved using the SBBR method were 21.6 %, 54.7 %, and 56.1 %, respectively. The bio-effluent was degraded by the subsequent electro-Fenton process, which was rapid over the first 30 min then subsequently slowed. After 60 min of the electro-Fenton treatment, the efficiencies of reduction of TOC, COD, and BOD5 were 40.5 %, 71.6 %, and 61.0 %, respectively. There is a good correlation between the absorbance of leachate at 254 nm (UV254) and COD or TOC during the electro-Fenton treatment.


2018 ◽  
Vol 5 (4) ◽  
pp. 241-248 ◽  
Author(s):  
Zabihollah Yousefi ◽  
Ali Zafarzadeh ◽  
Abdolaziz Ghezel

Background: Electro-oxidation is developed as an electrochemical method to overcome the problems of the conventional decolorization technologies and is an appropriate alternative for the treatment of colored wastewater from various industries. The purpose of this study was to evaluate the efficiency of the electrochemical oxidation process in removal of chemical oxygen demand (COD) and Acid Red 18 (AR18) dye from aqueous solutions. Methods: In this research, a laboratory scale of electro-coagulation reactor for the treatment of synthetic wastewater was made and studied. The effects of different variables including pH, current density, dye concentration, and electrolysis time were investigated. The experiment steps were designed by DesignExpert 10 software using the selected variables. Finally, the dye and COD analysis was performed by spectrophotometer. The optimization was performed using Taguchi fractional factorial design during the removal of dye and COD. Results: Maximum removal of dye (89%) and COD (72.2%) were obtained at pH=3, current density=20 mA/cm2 , initial dye concentration=100 mg/L, and reaction time=45 min. ANOVA test showed a significant relationship between statistical model and test data. Also, the results indicate that the distribution of the residues of the model was normal. Conclusion: By designing experiments through Taguchi method, the removal process will be optimized and by decreasing the number of experiments, the optimal conditions for pollutant removal will be prepared. The results suggest that the Electro-oxidation system is a very suitable technique for the enhancement of wastewater treatment.


2013 ◽  
Vol 9 (3) ◽  
pp. 1988-1999
Author(s):  
Ukiwe L.N ◽  
Ibeneme S.I ◽  
Duru C.E ◽  
Okolue B.N ◽  
Onyedika G.O ◽  
...  

Chemical and electrocoagulation are widely used coagulation methods employed in water and wastewater treatment. Both coagulation processes are effective in removing a wide range of impurities which include dissolved organic matter in form of chemical and biological oxygen demand, pathogens, oils, and colloidal particles as well as heavy metals. The present review has revealed that the mode of action of both coagulation methods is based on charge neutralization and floc formation. The effectiveness of both coagulation techniques depend on factors such as pH, coagulation dose, coagulant type, current density, applied voltage, water and wastewater  type, type of electrode, as well as size and number of electrodes. The commonly used chemical coagulants are inorganic coagulants based on aluminum and iron salts. However, there have been considerable successes in the development of pre-hydrolyzed inorganic coagulants which have the added advantage over traditional inorganic coagulants in that they function well over a wide range of pH and water temperatures. Electrocoagulation has been proposed as an alternative method to chemical coagulation because it is environmental friendly and cheap to operate. Nonetheless, most researchers are of the opinion that there are still some uncertainties regarding the understanding of its optimal performance and design mechanism.


2014 ◽  
Vol 700 ◽  
pp. 426-430 ◽  
Author(s):  
Hai Tang ◽  
Jun Peng Sha ◽  
Yang Long Ou ◽  
Xiang Zhao

The degradation behavior and mechanism of biologically pretreated coking wastewater (BPCW) were investigated by means of a lab-scale electro-coagulation (EC) in static methods. The results showed that the percent COD and color removal can reach 80.5 % and 95.4 % respectively under the optimal conditions (initial pH of 8.0; reaction time of 30 min; current density of 14.0 mA/cm2 and NaCl dosage 1.6 g/L).


Author(s):  
Mitra Afshar Moghaddam ◽  
Kambiz Seyyedi

Abstract In recent years, among the various treatment methods, the electrocoagulation process has been used for the treatment of effluents containing various dye pollutants. Sunset yellow (S.Y.) azo dye is one of the common food colors widely used in various food industries. This study investigated the removal of the dye S.Y. from aqueous media by the electrocoagulation method in an electrochemical reactor using concentric iron electrodes. The experiments were designed by the Response Surface Method (RSM) with the help of the Minitab software in such a way that the effect of various process-influencing parameters, such as current density, electrolysis time, electrolyte concentration, pH of the solution, and the effluent flow rate, on the desired pollutant removal efficiency was investigated. According to the results of the process optimization by RSM, the optimal conditions for the process were obtained as follows: pH of 10, current density of 2.65 mA/cm2, electrolysis time of 42.32 min, initial dye concentration of 20 mg/L, and effluent flow rate of 2.5 L/min. Under the above optimal conditions, the efficiency of dye removal was more than 99%.


2017 ◽  
Vol 76 (8) ◽  
pp. 1966-1980 ◽  
Author(s):  
Athir Boukhrissa ◽  
Fatiha Ferrag-Siagh ◽  
Lina-Mounia Rouidi ◽  
Smaïn Chemat ◽  
Hamid Aït-Amar

We examined the removal of abamectin by the electro-Fenton (EF) process and the feasibility of biological treatment after degradation. The effect of the operating parameters showed that abamectin (Aba) degradation was enhanced with increasing temperature. Response surface analysis of the central composite design led to the following optimal conditions for the abatement of chemical oxygen demand: 45.5 °C, 5 mg L−1, 150 mA, and 0.15 mmol L−1 for the temperature, initial Aba concentration, current intensity, and catalyst concentration, respectively. Under these conditions, 68.01% of the organic matter was removed and 94% of Aba was degraded after 5 h and 20 min of electrolysis, respectively. A biodegradability test, which was performed on a solution electrolyzed at 47 °C, 9 mg L−1, 150 mA, and 0.15 mmol L−1, confirms that the ratio of biological oxygen demand/chemical oxygen demand increased appreciably from 0.0584 to 0.64 after 5 h of electrolysis. This increased ratio is slightly above the limit of biodegradability (0.4). These results show the relevance of the EF process and its effectiveness for abamectin degradation. We conclude that biological treatment can be combined with the EF process for total mineralization.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Jalilzadeh ◽  
Ramin Nabizadeh ◽  
Alireza Mesdaghinia ◽  
Aliakbar Azimi ◽  
Simin Nasseri ◽  
...  

A systematic model for chemical oxygen demand (COD) removal using the ANAMMOX (Anaerobic AMMonium OXidation) process was provided based on an experimental design. At first, the experimental data was collected from a combined biological aerobic/anaerobic reactor. For modelling and optimization of COD removal, the main parameters were considered, such as COD loading, ammonium, pH, and temperature. From the models, the optimum conditions were determined as COD 97.5 mg/L, ammonium concentration equal to 28.75 mg-N/L, pH 7.72, and temperature 31.3°C. Finally, the analysis of the optimum conditions, performed by the response surface method, predicted COD removal efficiency of 81.07% at the optimum condition.


Sign in / Sign up

Export Citation Format

Share Document