scholarly journals Benchmarking biological nutrient removal in wastewater treatment plants: influence of mathematical model assumptions

2012 ◽  
Vol 65 (8) ◽  
pp. 1496-1505 ◽  
Author(s):  
Xavier Flores-Alsina ◽  
Krist V. Gernaey ◽  
Ulf Jeppsson

This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant was compared for a series of model assumptions. Three different model approaches describing BNR are considered. In the reference case, the original model implementations are used to simulate WWTP1 (ASM1 & 3) and WWTP2 (ASM2d). The second set of models includes a reactive settler, which extends the description of the non-reactive TSS sedimentation and transport in the reference case with the full set of ASM processes. Finally, the third set of models is based on including electron acceptor dependency of biomass decay rates for ASM1 (WWTP1) and ASM2d (WWTP2). The results show that incorporation of a reactive settler: (1) increases the hydrolysis of particulates; (2) increases the overall plant's denitrification efficiency by reducing the SNOx concentration at the bottom of the clarifier; (3) increases the oxidation of COD compounds; (4) increases XOHO and XANO decay; and, finally, (5) increases the growth of XPAO and formation of XPHA,Stor for ASM2d, which has a major impact on the whole P removal system. Introduction of electron acceptor dependent decay leads to a substantial increase of the concentration of XANO, XOHO and XPAO in the bottom of the clarifier. The paper ends with a critical discussion of the influence of the different model assumptions, and emphasizes the need for a model user to understand the significant differences in simulation results that are obtained when applying different combinations of ‘standard’ models.

1990 ◽  
Vol 22 (7-8) ◽  
pp. 53-60 ◽  
Author(s):  
B. Rabinowitz ◽  
T. D. Vassos ◽  
R. N. Dawson ◽  
W. K. Oldham

A brief review of recent developments in biological nitrogen and phosphorus removal technology is presented. Guidelines are outlined of how current understanding of these two removal mechanisms can be applied in the upgrading of existing wastewater treatment plants for biological nutrient removal. A case history dealing with the upgrading of the conventional activated sludge process located at Penticton, British Columbia, to a biological nutrient removal facility with a design flow of 18,200 m3/day (4.0 IMGD) is presented as a design example. Process components requiring major modification were the headworks, bioreactors and sludge handling facilities.


2013 ◽  
Vol 67 (7) ◽  
pp. 1481-1489 ◽  
Author(s):  
R. Barat ◽  
J. Serralta ◽  
M. V. Ruano ◽  
E. Jiménez ◽  
J. Ribes ◽  
...  

This paper presents the plant-wide model Biological Nutrient Removal Model No. 2 (BNRM2). Since nitrite was not considered in the BNRM1, and this previous model also failed to accurately simulate the anaerobic digestion because precipitation processes were not considered, an extension of BNRM1 has been developed. This extension comprises all the components and processes required to simulate nitrogen removal via nitrite and the formation of the solids most likely to precipitate in anaerobic digesters. The solids considered in BNRM2 are: struvite, amorphous calcium phosphate, hidroxyapatite, newberite, vivianite, strengite, variscite, and calcium carbonate. With regard to nitrogen removal via nitrite, apart from nitrite oxidizing bacteria two groups of ammonium oxidizing organisms (AOO) have been considered since different sets of kinetic parameters have been reported for the AOO present in activated sludge systems and SHARON (Single reactor system for High activity Ammonium Removal Over Nitrite) reactors. Due to the new processes considered, BNRM2 allows an accurate prediction of wastewater treatment plant performance in wider environmental and operating conditions.


1997 ◽  
Vol 36 (1) ◽  
pp. 129-137 ◽  
Author(s):  
Vibeke R. Borregaard

In the upgrade of wastewater treatment plants to include biological nutrient removal the space available is often a limiting facor. It may be difficult to use conventional suspended growth processes (i.e. activated sludge) owing to the relatively large surface area required for these processes. Recent years have therefore seen a revived interest in treatment technologies using various types of attached growth processes. The “new” attached growth processes, like the Biostyr process, utilise various kinds of manufactured media, e.g. polystyrene granules, which offer a high specific surface area, and are therefore very compact. The Biostyr plants allow a combination of nitrification-denitrification and filtration in one and the same unit. The results obtained are 8 mg total N/l and an SS content normally below 10 mg/l. The plants in Denmark which have been extended with a Biostyr unit have various levels of PLC control and on-line instrumentation.


2002 ◽  
Vol 45 (6) ◽  
pp. 209-218 ◽  
Author(s):  
J. Makinia ◽  
M. Swinarski ◽  
E. Dobiegala

Mathematical modelling and computer simulation have became a useful tool in evaluating the operation of wastewater treatment plants (WWTPs) in terms of nutrient removal capability. In this study, steady-state simulation results for two large biological nutrient removal WWTPs are presented. The plants are located in two neighbouring cities Gdansk and Gdynia in northern Poland. Simulations were performed using a pre-compiled model and layouts (MUCT and Johannesburg processes) implemented in the GPS-X simulation package. The monthly average values of conventional parameters, such as COD, Total Suspended Solids, total N, N-NH4+, P-PO4− were used as input data. The measured effluent concentrations of COD, N-NH4+, N-NO3− and P-PO4− as well as reactor MLSS were compared with model predictions. During calibration, performed from the process engineering perspective, default values of only five model parameters were changed. The opportunities for further applications of such models in municipal WWTPs are discussed.


2012 ◽  
Vol 573-574 ◽  
pp. 659-662
Author(s):  
Hao Wang

In Tangshan area, the secondary effluent of wastewater treatment plants was used for this study. Horizontal zeolite wetland was carried out treating it. Hydraulic loading rate was the parameters for analyzing the nitrogen and phosphorus removal efficiency of pollutants from the secondary effluent of wastewater treatment plant. Zeolite constructed wetlands showed different behaviors for nitrogen and phosphorus removals.Under the optimum hydraulic loading rate, the primary pollutions were removed to a large extent.


mSystems ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Pamela Y. Camejo ◽  
Ben O. Oyserman ◽  
Katherine D. McMahon ◽  
Daniel R. Noguera

“CandidatusAccumulibacter phosphatis” is widely found in full-scale wastewater treatment plants, where it has been identified as the key organism for biological removal of phosphorus. Since aeration can account for 50% of the energy use during wastewater treatment, microaerobic conditions for wastewater treatment have emerged as a cost-effective alternative to conventional biological nutrient removal processes. Our report provides strong genomics-based evidence not only that “Ca. Accumulibacter phosphatis” is the main organism contributing to phosphorus removal under microaerobic conditions but also that this organism simultaneously respires nitrate and oxygen in this environment, consequently removing nitrogen and phosphorus from the wastewater. Such activity could be harnessed in innovative designs for cost-effective and energy-efficient optimization of wastewater treatment systems.


2004 ◽  
Vol 48 (11-12) ◽  
pp. 453-462
Author(s):  
E.U. Cokgor ◽  
C.W. Randall

The Wilderness Wastewater Treatment Plant (WWTP) located in Orange County, Virginia is a four concentric ring oxidation ditch activated sludge system with a rated capacity of 1,935 m3/day. The three outer rings are used for wastewater treatment and the inner ring is used as an aerobic digester. The flow capacity has been increased from 1,935 to 3,760 m3/d, however, the desired design capacity has since been increased to 3,870 m3/d, and there are plans to eventually expand to approximately 4,840 m3/d with improved nitrogen removal. The design goal for the planned upgrade is to discharge an effluent that contains less than 10 mg/l total nitrogen (TN) at all times, with an annual average of 8 mg/l or less. In this study, the pre-upgrade performance of the Wilderness Wastewater Treatment Plant was evaluated and several modifications were recommended for the incorporation of biological nutrient removal (BNR).


Sign in / Sign up

Export Citation Format

Share Document